236. Lowest Common Ancestor of a Binary Tree

Definition of LCA

The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).

Algorithm 1

  • find path from root to n1
  • find path from root to n2
  • traverse both paths until the nodes are not same, return previous node

Find a path from root to given node

  • DFS search like preorder traverse in recursive version
  • base case if root is null return false
  • otherwise, if root is the given node return true
  • otherwise, put the node to the end of a LinkedList
  • traverse left-subtree and right-subtree
    • if one of return value of two traversals is true, return true;
    • otherwise, remove the last node in the LinkedList and return false;

Complexity

  • Time complexity: Worse case O(N) (N is number of nodes in the binary tree)
    • find path: Worse case O(N)
    • find previous node before first different nodes: Worse Case O(H) (H is height of the binary tree)
  • Space complexity: O(H) (H is height of the binary tree)
    • we need a LinkedList to store the path, and the length of path is H

Code

public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        LinkedList pathToP = new LinkedList();
        LinkedList pathToQ = new LinkedList();
        if (!getPath(root, pathToP, p) || !getPath(root, pathToQ, q)) {
            return null;
        }
        Iterator traverseP = pathToP.iterator();
        Iterator traverseQ = pathToQ.iterator();
        TreeNode pre = null;
        while(traverseP.hasNext() && traverseQ.hasNext()) {
            TreeNode curP = traverseP.next();
            TreeNode curQ = traverseQ.next();
            if (curP == curQ) {
                pre = curP;
            } else {
                break;
            }
        }
        return pre;
    }

    private boolean getPath(TreeNode root, LinkedList path, TreeNode target) {
        if (root == null) {
            return false;
        }
        path.add(root);
        if (root == target) {
            return true;
        }
        if (getPath(root.left, path, target) || getPath(root.right, path, target)) {
            return true;
        }
        path.removeLast();
        return false;
    }

Algorithm 2

  • traverse the tree start from root
  • if any target nodes matches the root, return root
  • else we traverse the left subtree and right subtree
  • if the root which has a target node in its left subtree and another in its right subtree, the root is LCA
  • if the two target nodes at left subtree, the LCA has been found
  • if the two target nodes at right subtree, the LCA has been found

Code

 public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    return LCA(root, p, q);
}

private TreeNode LCA(TreeNode root, TreeNode p, TreeNode q) {
    if (root == null) {
        return null;
    }
    if (root == p || root == q) {
        return root;
    }
    TreeNode left = LCA(root.left, p, q);
    TreeNode right = LCA(root.right, p, q);
    if (left != null && right != null) {
        return root;
    }
    return (left == null)? right: left;
}

你可能感兴趣的:(236. Lowest Common Ancestor of a Binary Tree)