对ndarray的操作:索引、切片、转置

python高级应用与数据处理学习笔记 09

1、索引、切片
import numpy as np

# 索引
a = np.random.random((2,3,4))
print(a)

# [[[ 0.24669554  0.41147959  0.58667011  0.16186598]
#   [ 0.02656519  0.91044857  0.73566317  0.86165827]
#   [ 0.95063107  0.86839605  0.55965123  0.38786474]]
#
#  [[ 0.14023812  0.75629064  0.81219621  0.87785726]
#   [ 0.57575656  0.24517288  0.02211154  0.16691134]
#   [ 0.22878503  0.5652508   0.19264238  0.21291273]]]

# 对单个的索引
print(a[0][1][1])   #0.91044857166
print(a[0,1,1])     #0.91044857166


# 对多个的索引
print(a[0][0][1:3])
print(a[0][1][1:3])
print(a[0][2][1:3])

# 上面的3部操作等同于
print(a[0,:,1:3])

# 上面的3部操作等同于
print(a[0][:].T[1:3].T)

# 布尔值的索引
# 布尔值的索引:利用布尔值型的数组进行数据索引,最终返回的结果是对应索引数组中数据为True位置的值
# 注意:
# 1、True位置的元素取出来形成一个新数组,是一维数组
# 2、索引数组和布尔型数组的shape必须一致
# 3、常用于数据清洗

a = np.random.random((4,4,3))
print('a的值为:=========================')
print(a)
b = a > 0.5
print('b的值为:=========================')
print(b)

c = a[b]
print('c的值为:=========================')
print(c)

# a的值为:=========================
# [[[ 0.82845288  0.98329758  0.43359219]
#   [ 0.12132049  0.70090391  0.72885301]
#   [ 0.50032925  0.26513678  0.96059203]
#   [ 0.09782446  0.51226214  0.26209529]]
# 
#  [[ 0.16773934  0.68813356  0.43629845]
#   [ 0.82266855  0.46399805  0.50791978]
#   [ 0.27159864  0.93022272  0.56654779]
#   [ 0.01313173  0.11657045  0.47096045]]
# 
#  [[ 0.06509039  0.91746951  0.39954364]
#   [ 0.3960294   0.65175321  0.57412961]
#   [ 0.23939818  0.7203695   0.15798556]
#   [ 0.23249503  0.10869684  0.65794804]]
# 
#  [[ 0.97224345  0.5668863   0.24372173]
#   [ 0.52432717  0.54046684  0.01262262]
#   [ 0.02243452  0.6662223   0.05360318]
#   [ 0.56587212  0.20596584  0.6398141 ]]]
# b的值为:=========================
# [[[ True  True False]
#   [False  True  True]
#   [ True False  True]
#   [False  True False]]
# 
#  [[False  True False]
#   [ True False  True]
#   [False  True  True]
#   [False False False]]
# 
#  [[False  True False]
#   [False  True  True]
#   [False  True False]
#   [False False  True]]
# 
#  [[ True  True False]
#   [ True  True False]
#   [False  True False]
#   [ True False  True]]]
# c的值为:=========================
# [ 0.82845288  0.98329758  0.70090391  0.72885301  0.50032925  0.96059203
#   0.51226214  0.68813356  0.82266855  0.50791978  0.93022272  0.56654779
#   0.91746951  0.65175321  0.57412961  0.7203695   0.65794804  0.97224345
#   0.5668863   0.52432717  0.54046684  0.6662223   0.56587212  0.6398141 ]
import numpy as np

# 花式索引:利用整数数组进行索引的方式
a = np.arange(24).reshape((4,-1))
print('a的值为:=======================')
print(a)
print('a[1:3]的值为:=======================')
print(a[1:3])  #切片只能用于连续的数据,如果要切不连续的话,那就要用到花式索引了
print('花式索引的应用:=======================')
print('a[[0,3]]:=======================')
print(a[[0,3]])
print('a[[0,3],[0,3]]:=======================')
print(a[[0,3],[0,3]])
print('a[np.ix_([0,3],[0,3])]:=======================')
print(a[np.ix_([0,3],[0,3])])
print('a[[0,3].T[[0,3]].T]:=======================')
print(a[[0,3]].T[[0,3]].T)

# a的值为:=======================
# [[ 0  1  2  3  4  5]
#  [ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]
#  [18 19 20 21 22 23]]
# a[1:3]的值为:=======================
# [[ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]]
# 花式索引的应用:=======================
# [[ 0  1  2  3  4  5]
#  [18 19 20 21 22 23]]
2、转置

import numpy as np

a = np.arange(24).reshape((2,3,4))
print('a的值为:==================')
print(a)
# 转置的第一种方法
# b = a.T

# 转置的第二种方法
# b = np.transpose(a)

# 转置的第三种方法
b = a.transpose()
print('b,b.shape的值为:==================')
print(b,b.shape)

你可能感兴趣的:(对ndarray的操作:索引、切片、转置)