Time Limit: 20 Sec
Memory Limit: 256 MB
http://codeforces.com/contest/455/problem/C
Input
The first line contains three integers n, m, q (1 ≤ n ≤ 3·105; 0 ≤ m < n; 1 ≤ q ≤ 3·105) — the number of cities, the number of the roads we already have and the number of queries, correspondingly.
Each of the following m lines contains two integers, ai and bi (ai ≠ bi; 1 ≤ ai, bi ≤ n). These numbers represent the road between cities ai and bi. There can be at most one road between two cities.
Each of the following q lines contains one of the two events in the following format:
1 xi. It is the request Andrew gives to Dima to find the length of the maximum path in the region that contains city xi (1 ≤ xi ≤ n).
2 xi yi. It is the request Andrew gives to Dima to merge the region that contains city xi and the region that contains city yi (1 ≤ xi, yi ≤ n). Note, that xi can be equal to yi.
Output
For each event of the first type print the answer on a separate line.
Sample Input
6 0 6
2 1 2
2 3 4
2 5 6
2 3 2
2 5 3
1 1
Sample Output
4
题意
N个点m条边的无向图,有两种操作。
1.查询x块中的最长路是多少
2.连接x,y块,使得x,y中的最长路最小
题解:
并查集,用求树的直径的方法求这个块中的最长路
每次连接的时候,不需要真的连边,使直径小的指向直径大的,然后转移方程s[x]=max(s[x],(s[x]+1)/2+(s[y]+1)/2+1)
从每个直径的中点,连向另一个的中点
#include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> #include <map> #include <stack> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); #define sspeed ios_base::sync_with_stdio(0);cin.tie(0) #define test freopen("test.txt","r",stdin) #define maxn 2000001 #define mod 10007 #define eps 1e-5 const int inf=0x3f3f3f3f; const ll infll = 0x3f3f3f3f3f3f3f3fLL; inline ll read() { ll x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } //************************************************************************************** int N, M, Q, f[maxn], s[maxn]; int root, ans, rec; vector<int> g[maxn]; int getfar(int x) { return f[x] == x ? x : f[x] = getfar(f[x]); } void link (int u, int v) { int x = getfar(u); int y = getfar(v); if (x == y) return; if (s[x] < s[y]) swap(s[x], s[y]); f[y] = x; s[x] = max(s[x], (s[x] + 1) / 2 + (s[y] + 1) / 2 + 1); } void dfs (int u, int p, int d) { f[u] = root; if (d > ans) { ans = d; rec = u; } for (int i = 0; i < g[u].size(); i++) { if (g[u][i] != p) dfs(g[u][i], u, d+1); } } int main () { int type, u, v; scanf("%d%d%d", &N, &M, &Q); for (int i = 1; i <= N; i++) { f[i] = i; g[i].clear(); } for (int i = 0; i < M; i++) { scanf("%d%d", &u, &v); g[u].push_back(v); g[v].push_back(u); } for (int i = 1; i <= N; i++) { if (f[i] == i) { root = rec = i; ans = -1; dfs(i, 0, 0); ans = -1; dfs(rec, 0, 0); s[i] = ans; } } for (int i = 0; i < Q; i++) { scanf("%d", &type); if (type == 1) { scanf("%d", &u); v = getfar(u); printf("%d\n", s[v]); } else { scanf("%d%d", &u, &v); link(u, v); } } return 0; }
代码: