- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、系统架构设计(一)数据采集与预处理模块(二)大模型核心算法模块(三)应用层功能模块三、全流程系统流程图四、术前阶段详细方案(一)患者信息采集与整合(二)胆囊结石风险预测(三)手术方案制定辅助(四)麻醉方案规划五、术中阶段详细方案(一)实时数据监测与传输(二)手术进程智能辅助六、术后阶段详细方案(一)术后恢复情况预测(二)并发症风险预测(三)护理方案调整(四)康复指导七、并发症风险预
- AI摄像头动捕:精准量化八段锦动作质量,赋能传统功法习练
在追求动作标准度的竞技体育、舞蹈教学或运动康复领域,如何科学、客观、高效地评估动作质量一直是核心挑战。如今,AI摄像头动捕技术的成熟,正为这些领域带来突破性的解决方案,尤其在需要高度专注与准确性的八段锦、太极拳等传统健身功法领域中展现出巨大潜力。AI摄像头动捕系统,通过部署多组高帧率RGB摄像头,在空间中构建一个精密的三维捕捉场域。这种无穿戴动捕(或称无标记点动捕)的方式,让用户无需任何设备束缚人
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- 老年综合实训室功能:重塑老年健康服务教育实践体系
凯禾瑞华_实训室建设
实训室建设大数据人工智能vrar虚拟现实unity
一、老年综合实训室的教育价值随着老年人口数量的增加和对健康服务需求的多元化,社会需要具备综合能力的老年健康服务人才。老年综合实训室具备多功能集成的特点,能够涵盖老年生活照料、健康护理、心理慰藉、康复训练等多个领域的实践教学。在老年综合实训室中,学生可以接触到不同类型的老年健康服务场景,锻炼多方面的能力,从而成为适应社会需求的复合型人才,这对于提升老年健康服务教育的质量和效果具有重要意义。点击获取实
- 基于大模型预测原发性醛固酮增多症的综合技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述三、术前阶段(一)数据采集与预处理(二)疾病诊断与分型预测(三)并发症风险预测四、术中阶段(一)实时数据监测与整合(二)手术决策支持(三)麻醉方案动态优化五、术后阶段(一)康复进度监测与预测(二)并发症监测与干预(三)术后护理指导六、统计分析与技术验证(一)模型性能评估指标体系(二)对比研究与临床实效分析七、实验验证证据(一)回顾性病例研究(二)前瞻性临床试验八、健康教
- 基于大模型预测肾囊肿的技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述(一)数据收集与整理(二)大模型构建与训练(三)术前预测与方案制定(四)术中决策支持(五)术后管理与预测(六)并发症风险预测与防控(七)健康教育与指导三、技术方案流程图四、统计分析与技术验证方法(一)模型性能评估指标(二)对比实验设计(三)交叉验证与外部验证五、实验验证证据(一)回顾性病例分析(二)前瞻性临床试验六、健康教育与指导方案细化(一)饮食指导(二)运动康复(三
- 从0开始学习R语言--Day26--因果推断
很多时候我们在探讨数据的相关性问题时,很容易会忽略到底是数据本身的特点还是真的是因为特征的区分导致的不同,从而误以为是特征起的效果比较大。这就好比测试一款新药是否真的能治病,假如吃药的患者康复的更快,那到底是因为药物本身的效果好,还是因为患者本身更健康,平时有控制饮食合理作息与运动,从而在患病后更快地凭借自身免疫力战胜病毒。这需要我们意识到对照试验还需要人为地补足某些条件,也就是探讨是否真的是X导
- 基于大模型预测急性横贯性脊髓炎的综合技术方案研究报告大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、技术方案总体架构三、术前预测与决策四、术中监测与决策支持五、术后护理与康复指导六、统计分析与技术验证七、实验验证与证据支持八、健康教育与指导九、结论与展望一、引言(一)研究背景急性横贯性脊髓炎的临床现状与挑战阐述急性横贯性脊髓炎的发病率、致残率以及对患者生活质量的严重影响,强调准确预测和精准治疗的重要性。大模型技术在医疗领域的应用前景简述大模型在医学影像分析、疾病诊断与预测等方面的
- 基于大模型预测的视神经脊髓炎技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言(一)研究背景(二)研究目的与意义(三)大模型在医疗领域的应用现状二、术前评估与预测(一)数据采集与预处理(二)大模型构建与训练(三)术前风险评估与预测三、术中监测与决策支持(一)实时数据采集与传输(二)术中决策支持系统四、术后管理与康复(一)术后早期预警与监测(二)康复效果预测与个性化康复方案制定五、并发症风险预测与防控(一)并发症类型与风险因素分析(二)并发症风险预测模型构建与验证
- 基于大模型的脑出血全流程预测系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、系统概述三、系统架构(一)数据采集与预处理层(二)模型训练与优化层(三)预测与决策支持层(四)数据管理与分析层(五)用户交互与应用层四、术前预测(一)数据采集(二)数据预处理(三)脑出血风险预测模型(四)手术方案制定(五)麻醉方案推荐五、术中监测与决策(一)数据采集(二)数据预处理(三)实时病情监测模型(四)手术策略调整建议六、术后护理与康复(一)数据采集(二)数据预处理(三)并发
- 寻疗微擎开源生态下的智慧医疗服务
小程序
寻疗系统是基于微擎开源生态开发的垂直领域医疗服务解决方案,专为医院、诊所、康养机构、健康服务平台设计。依托微擎系统的PHP开发框架与模块化能力,实现“医患对接-在线问诊-康复管理-资源整合”的全流程数字化,助力医疗服务机构快速搭建线上服务平台,提升诊疗效率,优化患者就医体验。寻疗详细介绍:https://s.w7.cc/module-33494.html核心功能:微擎生态加持,全场景医疗服务赋能多
- 榕壹云医疗服务系统:基于ThinkPHP+MySQL+UniApp的多门店医疗预约小程序解决方案
老李不敲代码
uni-app小程序mysql软件需求
在数字化浪潮下,传统医疗服务行业正面临效率提升与客户体验优化的双重挑战。针对口腔、美容、诊所、中医馆、专科医院及康复护理等需要预约或诊断服务的行业,我们开发了一款基于ThinkPHP+MySQL+UniApp的多门店服务预约小程序——榕壹云医疗服务系统。该系统通过模块化设计与开源架构,为医疗机构提供高效、灵活的管理工具,助力数字化转型。一、项目背景:解决医疗行业管理痛点随着消费者对便捷服务的需求增
- 蓝桥杯康复训练 Day4 (前缀和)(树状数组)(线段树)
ooold_six
2022蓝桥杯java算法
昨天没状态摆了一天,今天复习一下各种区间问题前缀和常规遍历区间求和复杂度O(n)单点修改复杂度O(1)前缀和区间求和复杂度O(1)单点修改复杂度O(n)前缀和数组中每个值覆盖的是从开始到该点整个区间的和值求i~j的区间和值可以通过s[j]-s[i-1]计算可以扩展成二维三维的前缀和在单点修改时需要对所有覆盖该点的值进行修改在对区间求和复杂度要求高时使用蓝桥杯–前缀和1树状数组对比前缀和复杂度前缀和
- 医疗机器人中的AI技术:手术精度与康复效果的提升
人工智能教程
人工智能transformer深度学习神经网络机器学习大数据机器人
在现代医疗领域,人工智能(AI)技术与医疗机器人的融合正在深刻改变医疗服务的模式和质量。从手术室的精准操作到康复中心的个性化治疗,AI技术为医疗机器人注入了强大的智能动力,显著提升了手术精度和康复效果。关注VX公众号【学长论文指导】发送暗号9领取一、AI技术在手术机器人中的应用手术机器人是医疗机器人领域的重要分支,其核心目标是通过高精度的机械操作和智能决策,辅助医生完成复杂手术。AI技术在手术机器
- 【仿生机器人系统设计】涉及到的伦理与安全问题
DFminer
机器人安全
随着材料科学、人工智能与生物工程学的融合突破,仿生机器人正从科幻走向现实。它们被寄予厚望——在医疗康复、老年照护、极端环境作业甚至社交陪伴等领域释放巨大价值。然而,当机器无限趋近于“生命体”,其设计过程中潜伏的伦理与安全迷宫便成为无法回避的核心挑战,这直接关乎技术能否真正服务于人。一、伦理困境:在“像人”与“是人”之间隐私与数据黑洞:问题:为实现自然交互,仿生机器人需搭载强大的环境感知(视觉、听觉
- 算法训练营Day01-数组Part01
shikinamiask
算法leetcode职场和发展
DAY01题目:704.二分查找-力扣(LeetCode)27.移除元素-力扣(LeetCode)977.有序数组的平方-力扣(LeetCode)704、二分查找704.二分查找-力扣(LeetCode)秒了,真秒了。问:为什么这么快?答:做过了。熟稔于心,无需多言。康复训练第一题,熟练一些vector的用法。classSolution{public:intsearch(vector&nums,i
- 基于大模型的颅前窝底脑膜瘤预测与治疗技术方案
LCG元
大模型医疗研究-技术方向技术方案深度学习人工智能机器学习
目录技术方案概述一、核心算法实现1.多模态数据融合算法(伪代码)2.并发症风险预测模型(伪代码)二、系统模块流程图1.数据采集模块2.预测与决策模块三、系统集成方案1.系统集成流程图2.系统部署拓扑图四、关键技术验证1.模型性能对比表2.典型病例验证流程五、实施保障体系技术方案概述本方案基于深度学习大模型构建颅前窝底脑膜瘤全周期诊疗系统,包含术前精准预测、术中动态决策、术后康复管理三大模块。通过多
- 康复评定试题库-康复评定的题库
答案资料
大数据
第一章总论一、名词解释:1.康复功能评定:是用客观的、量化的方法有效和准确地评定残疾者功能障碍的种类、性质、部位、范围、严重程度和预后。包括躯体功能、精神状态、言语功能和社会功能等方面的评定。2.初期评定:是首次对患者进行的评定。目的是发现和确定患者的功能状况和存在的问题,判断障碍程度、康复潜力和预后,为制定康复治疗计划提供可靠的依据。3.中期评定:是指患者经过一段时间治疗后进行的再次评定。评定的
- 基于大模型预测的膝内翻畸形诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能算法
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目的与方法二、大模型预测原理及数据基础2.1大模型介绍2.2数据收集与预处理2.3模型训练与验证三、术前预测与准备3.1术前病情评估指标3.2大模型预测结果分析3.3术前检查项目及意义3.4基于预测的手术方案制定3.5麻醉方案选择四、术中应用与操作4.1手术流程与关键步骤4.2大模型辅助术中决策4.3实时监测与风险应对五、术后评估与康复
- 大模型在先天性肌性斜颈诊疗全流程中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法
目录一、引言1.1研究背景与目的1.2先天性肌性斜颈概述二、大模型在术前的预测应用2.1病情评估2.2手术风险预测三、大模型在术中的应用3.1实时手术导航与辅助决策3.2应对突发状况四、大模型对并发症风险的预测4.1常见并发症分析4.2大模型预测原理与方法五、基于大模型预测制定治疗方案5.1手术方案定制5.2麻醉方案选择六、术后护理与大模型的作用6.1伤口护理指导6.2康复训练计划制定七、统计分析
- 上肢康复机器人设计与临床应用研究
2301_78600126
机械设计制造及其自动化机器人
引言脑卒中、脊髓损伤等神经系统疾病导致的上肢运动功能障碍,严重影响了患者的生活质量。传统康复治疗依赖治疗师手动辅助训练,存在效率低、量化难、人力成本高等问题。上肢康复机器人通过精准的运动控制与生物反馈机制,为实现高效、标准化的康复训练提供了技术解决方案。本文从临床需求出发,系统阐述上肢康复机器人的设计方法,并探讨其关键技术突破方向。一、康复医学需求与设计目标1.1临床医学要求适应症范围:需覆盖Br
- 基于大模型的全面惊厥性癫痫持续状态技术方案
LCG元
大模型医疗研究-技术方向技术方案
目录一、数据收集与预处理系统1.1多模态数据集成模块1.2数据预处理流程二、大模型构建与训练系统2.1模型架构设计2.2训练流程三、术前评估系统3.1癫痫发作风险预测3.2手术可行性评估流程四、术中决策支持系统4.1实时监测数据处理4.2麻醉方案优化流程五、术后护理系统5.1短期预后预测模型5.2康复管理流程六、技术验证方案6.1对照试验设计七、健康教育系统7.1患者自我监测指导八、核心算法伪代码
- 基于大模型的脑出血智能诊疗与康复技术方案
LCG元
大模型医疗研究-技术方向人工智能深度学习机器学习算法
目录一、术前阶段1.1数据采集与预处理系统伪代码实现流程图1.2特征提取与选择模块伪代码实现流程图1.3大模型风险评估系统伪代码实现流程图二、术中阶段2.1智能手术规划系统伪代码实现流程图2.2麻醉智能监控系统伪代码实现流程图三、术后阶段3.1并发症预测系统伪代码片段3.2康复训练系统流程图四、技术验证体系4.1统计分析模块伪代码实现4.2实验验证框架流程图一、术前阶段1.1数据采集与预处理系统伪
- 大模型赋能围术期危重症预测系统的深度剖析与实践研究
LCG元
围术期危险因子预测模型研究围术期人工智能
一、引言1.1研究背景与意义围术期是指从患者决定接受手术治疗开始,到手术治疗直至基本康复的全过程,包括术前、术中和术后三个阶段。在围术期,患者面临着诸多风险,如出血、感染、器官功能障碍等,这些风险可能导致危重症的发生,严重威胁患者的生命健康。据统计,全球每年有数以百万计的患者在围术期发生危重症,其死亡率和致残率居高不下。在中国,随着人口老龄化的加剧和手术量的不断增加,围术期危重症的防治形势也日益严
- Captiks无线惯性动捕及步态分析系统:高频采样+400g超宽动态量程,赋能医疗康复、竞技体育、工业检测三大领域,运动轨迹零盲区追踪!”
欣佰特cnbestec
CaptiksMOVIT步态分析系统运动研究分析
在运动科学与生物力学领域,精准捕捉人体运动数据是研究与应用的重要基础。传统光学动捕系统虽精度高,但存在环境依赖性强、操作复杂、成本高等局限。Captiks无线惯性动捕及步态分析系统采用先进传感器技术和无线传输,提供实时、准确的人体运动数据分析。其可穿戴设计让用户在多种环境中自由活动,摆脱了固定设备的局限。Movit系统不仅能测量步态时间、步幅和关节角度等关键参数,还支持全面的运动表现分析,适用于运
- 基于大模型预测围术期麻醉苏醒时间的技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言(一)研究背景与意义(二)国内外研究现状二、术前阶段(一)数据收集与整理(二)数据预处理与特征工程(三)大模型训练与初步预测(四)术前风险评估与个性化准备三、术中阶段(一)实时数据监测与传输(二)数据动态更新与模型调整(三)术中决策支持与干预四、术后阶段(一)苏醒时间精准预测与评估(二)并发症风险预警与处理(三)术后护理与康复指导五、统计分析与技术验证(一)数据统计分析方法(二)技术验
- 手搓传染病模型(SQEIR)
Code_Verse
matlab数学建模传染病微分方程
在传染病防控研究中,准确刻画隔离措施对疫情传播的影响至关重要。SQEIR模型(易感者S-暴露者E-隔离暴露者\(Q_E\)-感染者I-隔离感染者\(Q_I\)-康复者R)通过引入隔离仓室,为分析防控策略提供了有力工具。图中的微分方程组清晰定义了各仓室的动态变化:\(\begin{align*}\frac{dS}{dt}&=-\betaSI\\\frac{dE}{dt}&=\betaSI-\alph
- 手搓传染病模型(SEIARW)
Code_Verse
传染病模型看这一个就够了!matlab数学建模传染病微分方程
在传染病传播的研究中,水传播途径是一个重要的考量因素。SEAIRW模型(易感者S-暴露者E-感染者I-无症状感染者A-康复者R-水中病原体W)综合考虑了人与人接触传播以及水传播的双重机制,为分析此类传染病提供了全面的框架。图中的微分方程组清晰地定义了各变量的动态变化:\(\begin{cases}\frac{dS}{dt}=-\betaS(I+kA)-\beta_wSW\\\frac{dE}{dt
- 手搓传染病模型(SIS)
Code_Verse
传染病模型看这一个就够了!数学建模matlab
先看模型开始手搓%模型参数N=21858000;%总人数I0=170;%初始感染人数S0=N-I0;%初始易感人数beta=1.1;%传染率gamma=0.25;%康复率num_days=160;%模拟天数%x(1):感染人群I,x(2):易感人群Sdxdt=@(t,x)[beta*x(1)*x(2)/N+gamma*x(1);-beta*x(1)*x(2)/N-gamma*x(1)];[t,y]
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag