Python词云

很少记录自己的学习历程,无奈太健忘,而且刚入手Python,还是写下来供以后参考和思考。

本篇主要利用python jieba分词和wordcloud进行词的可视化,其中去了停用词,单独计算了词频。也可以利用结巴自带的关键词提取方法。

附网址jieba:https://github.com/fxsjy/jieba

wordcloud:https://github.com/amueller/word_cloud

#导入要用的包

import pandas as pd

import numpy as np

import jieba

import jieba.analyse

import wordcloud.WordCloud

import os

import matplotlib.pyplot as plt

import matplotlib

matplotlib.style.use('ggplot')

%matplotlib inline


#我将要处理的文件放在了D盘,文件类似dataframe结构

os.chdir('D:')

comtent = pd.read_csv('dataframe.csv',dtype = 'object')


#将每列的keyword合并成一个字符串以便于处理

action = ''

for kw in content['keyword']:

      action += kw.strip() + ' '


stopwords = open('stopword.txt').read().strip().splitlines()

seg = jieba.cut(action)

seg = ' '.join(seg).split()      ######分词后的词都是Unicode格式

words = ''

for word in seg:

    word = word.encode('utf-8')      #####因为停用词是utf-8编码的,所以将其也编码为utf-8

    if word not in stopwords:

        words += word.strip() + ' '

words =words.decode('utf-8')

此处可以直接用wordcloud直接画图啦,用generate()函数

#计算词频

words =  words.split()

word_freq = {}

for word in words:

    if word in word_freq:

        word_freq[word] += 1

    else:

        word_freq[word] = 1


#按词频排序,将dict类型转换成list类型

sort_word = []

for word,freq in word_freq.items():

    sort_word.append((word,freq))

sorted_word = sorted(sort_word,key = lambda x:x[1],reverse = True)

##查看前100个高频词

for word in sorted_word[:100]:

    print word[0],word[1]


#发现一个字的挺多,所以选择长度大于2的词

lengther = []

for word in sorted_word:

    if len(word[0]) > 1:

        lengther.append(word)


#画图啦

wordcloud1 = WordCloud(font_path = '..matplotlib\\mpl-data\\fonts\\ttf\\msyh.ttf',background_color = 'white',max_words = 200,stopwords =               stopwords).generate_from_frequencies(dict(lengther))

plt.imshow(wordcloud1)

plt.axis('off')

plt.show()


结巴自动关键词提取(tf-idf,textrank)

tf-idf = jieba.analyse.extract_tags(action,topK = 200,withWeight = True)

textrank = jieba.analyse.textrank(action,topK = 200,withWeight = True)

画图部分省略,和上面的一样。。。


注:本文为原创,转载请注明出处。

你可能感兴趣的:(Python词云)