Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考

一:Receiver启动的方式设想

1.Spark Streaming通过Receiver持续不断的从外部数据源接收数据,并把数据汇报给Driver端,由此每个Batch Durations就可以根据汇报的数据生成不同的Job,在不同的机器之上启动,每个reveiver 相当于一个分片,由于Sapark core 感觉不到它的特殊性,按普通的调度,即有可能在同一个Executor之中启动多个Receiver,这种情况之下导致负载不均匀或者由于Executor运行本身的故障,task 有可能启动失败,整个job启动就失败,即receiver启动失败。

启动Receiver

1. 从Spark Core的角度来看,Receiver的启动Spark Core并不知道, Receiver是通过Job的方式启动的,运行在Executor之上的,由task运行。

2. 一般情况下,只有一个Receiver,但是可以创建不同的数据来源的InputDStream.

3.启动Receiver的时候,实其上一个receiver就是一个partition分片,由一个Job启动,这个Job里面有RDD的transformations操作和action的操作,随着定时器触发,不断的产生有数据接收,每个时间段中产生的接收数据实其上就是一个partition分片,

4.  以上设计思想产生的如下问题:

(1)如果有多个InputDStream,那就要启动多个Receiver,每个Receiver也就相当于分片partition,那我启动Receiver的时候理想的情况下是在不同的机器上启动Receiver,但是SparkCore的角度来看就是应用程序,感觉不到Receiver的特殊性,所以就会按照正常的Job启动的方式来处理,极有可能在一个Executor上启动多个Receiver.这样的话就可能导致负载不均衡。(2)有可能启动Receiver失败,只要集群存在,Receiver就不应该启动失败。

(3)从运行过程中看,一个Reveiver就是一个partition的话,启动的由一个Task,如果Task启动失败,相应的Receiver也会失败。由此,可以得出,对于Receiver失败的话,后果是非常严重的,那么在SparkStreaming如何防止这些事的呢?Spark Streaming源码分析,在Spark Streaming之中就指定如下信息:

一是Spark使用一个Job启动一个Receiver.最大程度的保证了负载均衡。

二是Spark Streaming已经指定每个Receiver运行在那些Executor上,在Receiver运行之前就指定了运行的地方!

三是 如果Receiver启动失败,此时并不是Job失败,在内部会重新启动Receiver.

在StreamingContext的start方法被调用的时候,JobScheduler的start

def start(): Unit = synchronized {

state match {

caseINITIALIZED =>

startSite.set(DStream.getCreationSite())

StreamingContext.ACTIVATION_LOCK.synchronized {

StreamingContext.assertNoOtherContextIsActive()

try {

validate()

// Startthe streaming scheduler in a new thread, so that

thread local properties

// likecall sites and job groups can be reset without

affecting those of the

//current thread.

ThreadUtils.runInNewThread("streaming-start") {

sparkContext.setCallSite(startSite.get)

sparkContext.clearJobGroup()

sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL,"false")

//启动子线程,一方面为了本地初始化工作,另外一方面是不要阻塞主线程。

scheduler.start()

}

state =StreamingContextState.ACTIVE

} catch {

caseNonFatal(e) =>

logError("Error starting the context, marking it as

stopped",e)

scheduler.stop(false)

state =StreamingContextState.STOPPED

throw e

}

StreamingContext.setActiveContext(this)

}

shutdownHookRef = ShutdownHookManager.addShutdownHook(

StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)

//Registering Streaming Metrics at the start of the

StreamingContext

assert(env.metricsSystem != null)

env.metricsSystem.registerSource(streamingSource)

uiTab.foreach(_.attach())

logInfo("StreamingContext started")

case ACTIVE=>

logWarning("StreamingContext has already been started")

case STOPPED=>

throw newIllegalStateException("StreamingContext has already

been stopped")

}

}

2.而在JobScheduler的start方法中ReceiverTracker的start方法被调用,Receiver就启动了。

def start(): Unit = synchronized {

if (eventLoop !=null) return // scheduler has already been

started

logDebug("Starting JobScheduler")

eventLoop = newEventLoop[JobSchedulerEvent]("JobScheduler")

{

overrideprotected def onReceive(event: JobSchedulerEvent):

Unit = processEvent(event)

overrideprotected def onError(e: Throwable): Unit =

reportError("Error in jobscheduler", e)

}

eventLoop.start()

// attach ratecontrollers of input streams to receive batch

completion updates

for {

inputDStream<- ssc.graph.getInputStreams

rateController<- inputDStream.rateController

}ssc.addStreamingListener(rateController)

listenerBus.start(ssc.sparkContext)

receiverTracker =new ReceiverTracker(ssc)

inputInfoTracker= new InputInfoTracker(ssc)

//启动receiverTracker

receiverTracker.start()

jobGenerator.start()

logInfo("Started JobScheduler")

}

3.ReceiverTracker的start方法启动RPC消息通信体,为啥呢?因为receiverTracker会监控整个集群中的Receiver,Receiver转过来要向ReceiverTrackerEndpoint汇报自己的状态,接收的数据,包括生命周期等信息

def start(): Unit = synchronized {

if(isTrackerStarted) {

throw newSparkException("ReceiverTracker already started")

}

//Receiver的启动是依据输入数据流的。

if(!receiverInputStreams.isEmpty) {

endpoint =ssc.env.rpcEnv.setupEndpoint(

"ReceiverTracker",

newReceiverTrackerEndpoint(ssc.env.rpcEnv))

if(!skipReceiverLaunch) launchReceivers()

logInfo("ReceiverTracker started")

trackerState =Started

}

}

4.基于ReceiverInputDStream(是在Driver端)来获得具体的Receivers实例,然后再把他们分不到Worker节点上。一个ReceiverInputDStream只产生一个Receiver

private def launchReceivers(): Unit = {

val receivers =receiverInputStreams.map(nis => {

//一个数据输入来源(receiverInputDStream)只产生一个Receiver

val rcvr =nis.getReceiver()

rcvr.setReceiverId(nis.id)

rcvr

})

runDummySparkJob()

logInfo("Starting " + receivers.length + "receivers")

//此时的endpoint就是上面代码中在ReceiverTracker的start方法中构造的ReceiverTrackerEndpoint

endpoint.send(StartAllReceivers(receivers))

}

5. 其中runDummySparkJob()为了确保所有节点活着,而且避免所有的receivers集中在一个节点上。

private def runDummySparkJob(): Unit = {

if(!ssc.sparkContext.isLocal) {

ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x,

1)).reduceByKey(_+ _, 20).collect()

}

assert(getExecutors.nonEmpty)

}

ReceiverInputDStream中的getReceiver()方法获得receiver对象然后将它发送到worker节点上实例化receiver,然后去接收数据。

def getReceiver(): Receiver[T] //返回的是Receiver对象

6.  根据继承关系,这里看一下SocketInputDStream中的getReceiver方法。

def getReceiver(): Receiver[T] = {

newSocketReceiver(host, port, bytesToObjects,

storageLevel)

}

}

启动后台线程,调用receive方法。

private[streaming]

class SocketReceiver[T: ClassTag](

host: String,

port: Int,

bytesToObjects:InputStream => Iterator[T],

storageLevel:StorageLevel

) extendsReceiver[T](storageLevel) with Logging {

def onStart() {

// Start thethread that receives data over a connection

newThread("Socket Receiver") {

setDaemon(true)

override defrun() { receive() }

}.start()

}

启动socket开始接收数据。

/** Create a socket connection and receive data untilreceiver is

stopped */

def receive() {

var socket:Socket = null

try {

logInfo("Connecting to " + host + ":" + port)

socket = newSocket(host, port)

logInfo("Connected to " + host + ":" + port)

val iterator= bytesToObjects(socket.getInputStream())

while(!isStopped && iterator.hasNext) {

store(iterator.next)

}

if(!isStopped()) {

restart("Socket data stream had no more data")

} else {

logInfo("Stopped receiving")

}

} catch {

case e:java.net.ConnectException =>

restart("Error connecting to " + host + ":" + port,e)

caseNonFatal(e) =>

logWarning("Error receiving data", e)

restart("Error receiving data", e)

} finally {

if (socket !=null) {

socket.close()

logInfo("Closed socket to " + host + ":" + port)

}

}

}

}

7. ReceiverTrackerEndpoint源码如下:

/** RpcEndpoint to receive messages from the receivers.*/

private class ReceiverTrackerEndpoint(override valrpcEnv: RpcEnv)

extends ThreadSafeRpcEndpoint {

// TODO Removethis thread pool after

https://github.com/apache/spark/issues/7385 is merged

private valsubmitJobThreadPool =

ExecutionContext.fromExecutorService(

ThreadUtils.newDaemonCachedThreadPool("submit-job-thread-pool"))

private valwalBatchingThreadPool =

ExecutionContext.fromExecutorService(

ThreadUtils.newDaemonCachedThreadPool("wal-batching-thread-pool"))

@volatile privatevar active: Boolean = true

override defreceive: PartialFunction[Any, Unit] = {

// Localmessages

caseStartAllReceivers(receivers) =>

valscheduledLocations =

// schedulingPolicy调度策略

//receivers就是要启动的receiver

//getExecutors获得集群中的Executors的列表

// scheduleReceivers就可以确定receiver可以运行在哪些Executor上

schedulingPolicy.scheduleReceivers(receivers,getExecutors)

for (receiver<- receivers) {

//

scheduledLocations根据receiver的Id就找到了当前那些Executors可以运行Receiver

val executors= scheduledLocations(receiver.streamId)

updateReceiverScheduledExecutors(receiver.streamId,

executors)

receiverPreferredLocations(receiver.streamId)

=receiver.preferredLocation

//上述代码之后要启动的Receiver确定了,具体Receiver运行在哪些Executors上也确定了。

//循环receivers,每次将一个receiver传入过去。

startReceiver(receiver, executors)

}

//用于接收RestartReceiver消息,从新启动Receiver.

caseRestartReceiver(receiver) =>

// Oldscheduled executors minus the ones that are not active

any more

//如果Receiver失败的话,从可选列表中减去。

valoldScheduledExecutors =

//刚在调度为Receiver分配给哪个Executor的时候会有一些列可选的Executor列表

getStoredScheduledExecutors(receiver.streamId)

//从新获取Executors

valscheduledLocations = if (oldScheduledExecutors.nonEmpty)

{

// Tryglobal scheduling again

oldScheduledExecutors

} else {

//如果可选的Executor使用完了,则会重新执行rescheduleReceiver重新获取Executor.

valoldReceiverInfo =

receiverTrackingInfos(receiver.streamId)

// Clear"scheduledLocations" to indicate we are going to

do local scheduling

valnewReceiverInfo = oldReceiverInfo.copy(

state =ReceiverState.INACTIVE, scheduledLocations =

None)

receiverTrackingInfos(receiver.streamId) =

newReceiverInfo

schedulingPolicy.rescheduleReceiver(

receiver.streamId,

receiver.preferredLocation,

receiverTrackingInfos,

getExecutors)

}

// Assumethere is one receiver restarting at one time, so we

don't need to update

//receiverTrackingInfos

//重复调用startReceiver

startReceiver(receiver, scheduledLocations)

case c:CleanupOldBlocks =>

receiverTrackingInfos.values.flatMap(_.endpoint).foreach(_.send(c))

caseUpdateReceiverRateLimit(streamUID, newRate) =>

for (info<- receiverTrackingInfos.get(streamUID); eP

<- info.endpoint) {

eP.send(UpdateRateLimit(newRate))

}

// Remotemessages

caseReportError(streamId, message, error) =>

reportError(streamId, message, error)

}

8.  从注释中可以看到,Spark Streaming指定receiver在那些Executors运行,而不是基于Spark

Core中的Task来指定。

Spark使用submitJob的方式启动Receiver,而在应用程序执行的时候会有很多Receiver,这个时候是启动一个Receiver呢,还是把所有的Receiver通过这一个Job启动?

在ReceiverTracker的receive方法中startReceiver方法第一个参数就是receiver,从实现的可以看出for循环不 断取出receiver,然后调用startReceiver。由此就可以得出一个Job只启动一个Receiver.

如果Receiver启动失败,此时并不会认为是作业失败,会重新发消息给ReceiverTrackerEndpoint重新启动Receiver,这样也就确保了Receivers一定会被启动,这样就不会像Task启动Receiver的话如果失败受重试次数的影响。

private def startReceiver(

receiver:Receiver[_],

// scheduledLocations指定的是在具体的那台物理机器上执行。

scheduledLocations: Seq[TaskLocation]): Unit = {

//判断下Receiver的状态是否正常。

defshouldStartReceiver: Boolean = {

// It's okay tostart when trackerState is Initialized or

Started

!(isTrackerStopping || isTrackerStopped)

}

val receiverId =receiver.streamId

//如果不需要启动Receiver则会调用onReceiverJobFinish()

if(!shouldStartReceiver) {

onReceiverJobFinish(receiverId)

return

}

valcheckpointDirOption = Option(ssc.checkpointDir)

valserializableHadoopConf =

newSerializableConfiguration(ssc.sparkContext.hadoopConfiguration)

//startReceiverFunc封装了在worker上启动receiver的动作。

// Function tostart the receiver on the worker node

valstartReceiverFunc: Iterator[Receiver[_]] => Unit =

(iterator:Iterator[Receiver[_]]) => {

if(!iterator.hasNext) {

throw newSparkException(

"Could not start receiver as object not found.")

}

if(TaskContext.get().attemptNumber() == 0) {

valreceiver = iterator.next()

assert(iterator.hasNext == false)

// ReceiverSupervisorImpl是Receiver的监控器,同时负责数据的写等操作。

valsupervisor = new ReceiverSupervisorImpl(

receiver,SparkEnv.get, serializableHadoopConf.value,

checkpointDirOption)

supervisor.start()

supervisor.awaitTermination()

} else {

//如果你想重新启动receiver的话,你需要重新完成上面的调度,从新schedule,而不是Task重试。

// It'srestarted by TaskScheduler, but we want to

reschedule it again. So exit it.

}

}

// Create the RDDusing the scheduledLocations to run the

receiver in a Spark job

val receiverRDD:RDD[Receiver[_]] =

if(scheduledLocations.isEmpty) {

ssc.sc.makeRDD(Seq(receiver), 1)

} else {

valpreferredLocations =

scheduledLocations.map(_.toString).distinct

ssc.sc.makeRDD(Seq(receiver -> preferredLocations))

}

//receiverId可以看出,receiver只有一个

receiverRDD.setName(s"Receiver $receiverId")

ssc.sparkContext.setJobDescription(s"Streaming job running

receiver$receiverId")

ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite()))

//每个Receiver的启动都会触发一个Job,而不是一个作业的Task去启动所有的Receiver.

//应用程序一般会有很多Receiver,

//调用SparkContext的submitJob,为了启动Receiver,启动了Spark一个作业.

val future =ssc.sparkContext.submitJob[Receiver[_], Unit,

Unit](

receiverRDD,startReceiverFunc, Seq(0), (_, _) => Unit,

())

// We will keeprestarting the receiver job until ReceiverTracker

is stopped

future.onComplete{

case Success(_)=>

// shouldStartReceiver默认是true

if(!shouldStartReceiver) {

onReceiverJobFinish(receiverId)

} else {

logInfo(s"Restarting Receiver $receiverId")

self.send(RestartReceiver(receiver))

}

case Failure(e)=>

if(!shouldStartReceiver) {

onReceiverJobFinish(receiverId)

} else {

logError("Receiver has been stopped. Try to restart it.",

e)

logInfo(s"Restarting Receiver $receiverId")

//RestartReceiver

self.send(RestartReceiver(receiver))

}

//使用线程池的方式提交Job,这样的好处是可以并发的启动Receiver。

}(submitJobThreadPool)

logInfo(s"Receiver ${receiver.streamId} started")

}

9. 当Receiver启动失败的话,就会调用ReceiverTrackEndpoint重新启动一个Spark

Job去启动Receiver.

/**

* This messagewill trigger ReceiverTrackerEndpoint to restart a

Spark job for the receiver.

*/

private[streaming] case class

RestartReceiver(receiver:Receiver[_])

extendsReceiverTrackerLocalMessage

11. 当Receiver关闭的话,并不需要重新启动Spark Job.

/**

* Call when areceiver is terminated. It means we won't restart

its Spark job.

*/

private def onReceiverJobFinish(receiverId: Int): Unit ={

receiverJobExitLatch.countDown()

//使用foreach将receiver从receiverTrackingInfo中去掉。

receiverTrackingInfos.remove(receiverId).foreach {

receiverTrackingInfo=>

if(receiverTrackingInfo.state == ReceiverState.ACTIVE) {

logWarning(s"Receiver $receiverId exited but didn't

deregister")

}

}

}

12.

Supervisor.start(),在子类ReceiverSupervisorImpl中并没有start方法,因此调用的是父类ReceiverSupervisor的start方法。

/** Start the supervisor */

def start() {

onStart() //具体实现是子类实现的。

startReceiver()

}

Onstart方法源码如下:

/**

* Called whensupervisor is started.

* Note that thismust be called before the receiver.onStart() is

called to ensure

* things like[[BlockGenerator]]s are started before the receiver

starts sending data.

*/

protected def onStart() { }

其具体实现是在子类的ReceiverSupervivorImpl的onstart方法

override protected def onStart() {

registeredBlockGenerators.foreach { _.start() }

}

此时的start方法调用的是BlockGenerator的start方法。

/** Start block generating and pushing threads. */

def start(): Unit = synchronized {

if (state ==Initialized) {

state = Active

blockIntervalTimer.start()

blockPushingThread.start()

logInfo("Started BlockGenerator")

} else {

throw newSparkException(

s"Cannotstart BlockGenerator as its not in the Initialized

state [state =$state]")

}

}

备注:

资料来源于:DT_大数据梦工厂(Spark发行版本定制)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580

你可能感兴趣的:(Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考)