import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (15,10)
n_observations = 100
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
# plt.scatter(xs, ys)
# plt.show()
X = tf.placeholder(tf.float32, name='X')
Y = tf.placeholder(tf.float32, name='Y')
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.multiply(X, W), b)
W_2 = tf.Variable(tf.random_normal([1]), name='weight_2')
Y_pred = tf.add(tf.multiply(tf.pow(X, 2), W_2), Y_pred)
W_3 = tf.Variable(tf.random_normal([1]), name='weight_3')
Y_pred = tf.add(tf.multiply(tf.pow(X, 3), W_3), Y_pred)
sample_num = xs.shape[0]
loss = tf.reduce_mean(tf.square(Y_pred - Y))
train_step = tf.train.AdamOptimizer().minimize(loss)
n_samples = xs.shape[0]
with tf.Session() as sess:
# 记得初始化所有变量s
sess.run(tf.global_variables_initializer())
# writer = tf.summary.FileWriter('./graphs/polynomial_reg', sess.graph)
# 训练模型
for i in range(1000):
total_loss = 0
for x, y in zip(xs, ys):
# 通过feed_dic把数据灌进去
_, l = sess.run([train_step, loss], feed_dict={X: x, Y: y})
total_loss += l
if i % 20 == 0:
print('Epoch {0}: {1}'.format(i, total_loss / n_samples))
# 关闭writer
#writer.close()
# 取出w和b的值
W, W_2, W_3, b = sess.run([W, W_2, W_3, b])
plt.plot(xs, ys, 'bo', label='Real data')
plt.plot(xs, xs * W + np.power(xs, 2) * W_2 + np.power(xs, 3) * W_3 + b, 'r', label='Predicted data')
plt.legend()
plt.show()