Flutter 应用性能检测与优化

概述

软件项目的交付是一个复杂且漫长的过程,任何细小的失误都有可能导致交付过程失败。在软件开发过程中,除了代码逻辑的 Bug 和视觉异常这些功能层面的问题之外,移动应用另一类常见的问题是性能问题,比如滑动操作不流畅、页面出现卡顿丢帧现象等。这些问题虽然不至于让移动应用完全不可用,但也很容易引起用户反感,从而对应用质量产生质疑,甚至失去耐心。

那么,对于应用渲染并不流畅,出现了性能问题,我们该如何检测,又该从哪里着手处理呢?和移动开发类似, Flutter 的性能问题主要可以分为 GPU 线程问题和 UI 线程(CPU)问题两类。对于这些问题,有一个通用的套路:首先,都需要先通过性能图层进行初步分析,而一旦确认问题存在,接下来就是利用 Flutter 提供的各类分析工具来进行问题定位。

图层分析

Flutter运行模式

1、Debug

Debug模式可以在真机和模拟器上同时运行,此模式会打开所有的断言,包括debugging信息、debugger aids(比如observatory)和服务扩展。优化了快速develop/run循环,但是没有优化执行速度、二进制大小和部署。命令flutter run就是以这种模式运行的,通过sky/tools/gn --android或者sky/tools/gn --ios来构建应用的。

2、Release

Release模式只能在真机上运行,不能在模拟器上运行:会关闭所有断言和debugging信息,关闭所有debugger工具。优化了快速启动、快速执行和减小包体积。禁用所有的debugging aids和服务扩展。这个模式是为了部署给最终的用户使用。命令flutter run --release就是以这种模式运行的,通过sky/tools/gn --android --runtime-mode=release或者sky/tools/gn --ios --runtime-mode=release来构建应用。

3、Profile

Profile模式只能在真机上运行,不能在模拟器上运行,基本和Release模式一致,除了启用了服务扩展和tracing,以及一些为了最低限度支持tracing运行的东西(比如可以连接observatory到进程)。命令flutter run --profile就是以这种模式运行的,通过sky/tools/gn --android --runtime-mode=profile或者sky/tools/gn --ios --runtime-mode=profile来构建应用。

4、test

headless test模式只能在桌面上运行,基本和Debug模式一致,除了是headless的而且你能在桌面运行。命令flutter test就是以这种模式运行的,通过sky/tools/gn来build。

在实际开发中,应该用到上面所说的四种模式又各自分为两种:一种是未优化的模式,供开发人员调试使用;一种是优化过的模式,供最终的开发人员使用。默认情况下是未优化模式,如果要开启优化模式,build的时候在命令行后面添加--unoptimized参数。

不管是移动开发还是前端开发,对于性能问题分析的思路都是先分析并定位问题,Flutter也不例外,借助Flutter 提供的度量性能工具,我们可以快速定位代码中的性能问题,而性能图层就是帮助我们确认问题影响范围的利器,它类似Android的图层分析工具。

为了使用性能图层,Flutter提供了分析(Profile)模式,与调试代码可以通过模拟器在调试模式下找到代码逻辑 Bug 不同,性能问题需要在发布模式下使用真机进行检测。相比发布(Release)模式而言,调试模式增加了很多额外的检查(比如断言),这些检查可能会耗费很多资源;更重要的是,调试模式使用 JIT (即时编译)模式运行应用,代码执行效率较低。这就使得调试模式运行的应用,无法真实反映出它的性能问题。

而另一方面,模拟器使用的指令集为 x86,而真机使用的指令集是 ARM,由于这两种方式的二进制代码执行行为完全不同,因此模拟器与真机的性能差异较大。一些 x86 指令集擅长的操作模拟器会比真机快,而另一些操作则会比真机慢,这也使得我们无法使用模拟器来评估真机才能出现的性能问题。

为了调试性能问题,我们需要在发布模式的基础之上,为分析工具提供少量必要的应用追踪信息,这就是分析模式。除了一些调试性能问题必须的追踪方法之外,Flutter 应用的分析模式和发布模式的编译和运行是类似的,只是启动参数变成了 profile 而已。我们可以在 Android Studio 中通过菜单栏点击 【Run】-【Profile 】‘main.dart’ 选项启动应用,也可以通过命令行参数 flutter run --profile 运行 Flutter 应用。

渲染问题分析

在完成了应用启动之后,接下来我们就可以利用 Flutter 提供的渲染问题分析工具,即性能图层(Performance Overlay)来分析渲染问题了。性能图层会在当前应用的最上层,以 Flutter 引擎自绘的方式展示 GPU 与 UI 线程的执行图表,而其中每一张图表都代表当前线程最近 300 帧的表现,如果 UI 产生了卡顿(跳帧),这些图表可以帮助我们分析并找到原因,如下图所示。
Flutter 应用性能检测与优化_第1张图片
上图演示了性能图层的展现样式。其中,GPU 线程的性能情况在上面,UI 线程的情况显示在下面,蓝色垂直的线条表示已执行的正常帧,绿色的线条代表的是当前帧。

同时,为了保持 60Hz 的刷新频率,GPU 线程与 UI 线程中执行每一帧耗费的时间都应该小于 16ms(1/60 秒)。在这其中有一帧处理时间过长,就会导致界面卡顿,图表中就会展示出一个红色竖条,如下图所示。
Flutter 应用性能检测与优化_第2张图片
如果红色竖条出现在 GPU 线程图表,意味着渲染的图形太复杂,导致无法快速渲染;而如果是出现在了 UI 线程图表,则表示 Dart 代码消耗了大量资源,需要优化代码执行时间。

GPU问题定位

GPU渲染问题主要集中在底层渲染耗时上,有时候 Widget 树虽然构造起来容易,但在 GPU 线程下的渲染却很耗时。例如,涉及 Widget 裁剪、蒙层这类多视图叠加渲染,或是由于缺少缓存导致静态图像的反复绘制,都会明显拖慢 GPU 的渲染速度。

接下来,使用性能图层提供的两项参数,即检查多视图叠加的视图渲染开关 checkerboardOffscreenLayers和检查缓存的图像开关checkerboardRasterCacheImages来检查这两种情况。

checkerboardOffscreenLayers

多视图叠加通常会用到 Canvas 里的 savaLayer 方法,这个方法在实现一些特定的效果(比如半透明)时非常有用,但由于其底层实现会在 GPU 渲染上涉及多图层的反复绘制,因此会带来较大的性能问题。

对于 saveLayer 方法使用情况的检查,我们只需要在 MaterialApp 的初始化方法中,将 checkerboardOffscreenLayers 开关设置为 true,分析工具就会自动帮我们检测多视图叠加的情况。使用了 saveLayer 的 Widget 会自动显示为棋盘格式,并随着页面刷新而闪烁。不过,saveLayer 是一个较为底层的绘制方法,因此我们一般不会直接使用它,而是会通过一些功能性 Widget,在涉及需要剪切或半透明蒙层的场景中间接地使用。所以一旦遇到这种情况,我们需要思考一下是否一定要这么做,能不能通过其他方式来实现呢?

比如下面的例子中,我们使用 CupertinoPageScaffold 与 CupertinoNavigationBar 实现了一个动态模糊的效果,代码如下:


CupertinoPageScaffold(
  navigationBar: CupertinoNavigationBar(),//动态模糊导航栏
    child: ListView.builder(
      itemCount: 100,
      //为列表创建100个不同颜色的RowItem
      itemBuilder: (context, index)=>TabRowItem(
            index: index,
            lastItem: index == 100 - 1,
            color: colorItems[index],//设置不同的颜色
            colorName: colorNameItems[index],
          )
    )
);

其中,动态模糊的NavigationBar效果如下图所示。

当我们开启checkerboardOffscreenLayers之后,可以看到视图蒙层效果对GPU的渲染压力导致性能视图频繁闪动。如果我们没有对动态模糊效果有特殊需求,则可以使用不带模糊效果的 Scaffold 和白色的 AppBar 实现同样的产品功能,来解决这个性能问题。


Scaffold(
  //使用普通的白色AppBar
  appBar: AppBar(title: Text('Home', style: TextStyle(color:Colors.black),),backgroundColor: Colors.white),
  body: ListView.builder(
      itemCount: 100,
      //为列表创建100个不同颜色的RowItem
      itemBuilder: (context, index)=>TabRowItem(
        index: index,
        lastItem: index == 100 - 1,
        color: colorItems[index],//设置不同的颜色
        colorName: colorNameItems[index],
      )
  ),
);

运行一下代码,可以看到,在去掉了动态模糊效果之后,GPU 的渲染压力得到了缓解,checkerboardOffscreenLayers 检测图层也不再频繁闪烁了。

checkerboardRasterCacheImages

从资源的角度看,另一类非常消耗性能的操作是渲染图像,因为图像渲染会涉及 I/O、GPU 存储以及不同通道的数据格式转换,因此渲染过程的构建需要消耗大量资源。为了缓解 GPU 的压力,Flutter 提供了多层次的缓存快照,这样 Widget 重建时就无需重新绘制静态图像了。

与检查多视图叠加渲染的 checkerboardOffscreenLayers 参数类似,Flutter 提供了检查缓存图像的开关 checkerboardRasterCacheImages,来检测在界面重绘时频繁闪烁的图像。

为了提高静态图像显示性能,我们可以把需要静态缓存的图像加到 RepaintBoundary 中,RepaintBoundary 可以确定 Widget 树的重绘边界,如果图像足够复杂,Flutter 引擎会自动将其缓存,从而避免重复刷新。当然,因为缓存资源有限,如果引擎认为图像不够复杂,也可能会忽略 RepaintBoundary。下面的代码展示了通过 RepaintBoundary,将一个静态复合 Widget 加入缓存的具体用法,如下所示。


RepaintBoundary(//设置静态缓存图像
  child: Center(
    child: Container(
      color: Colors.black,
      height: 10.0,
      width: 10.0,
    ),
));

UI 线程问题定位

如果说 GPU 线程问题定位的是渲染引擎底层渲染异常,那么 UI 线程问题发现的则是应用的性能瓶颈。比如在视图构建时,在 build 方法中使用了一些复杂的运算,或是在主 Isolate 中进行了同步的 I/O 操作。这些问题,都会明显增加 CPU 的处理时间,拖慢应用的响应速度。

针对这类问题,我们可以使用 Flutter 提供的 Performance 工具,来记录应用的执行轨迹。Performance 是一个强大的性能分析工具,能够以时间轴的方式展示 CPU 的调用栈和执行时间,去检查代码中可疑的方法调用。

打开 Android Studio 底部工具栏中的“Open DevTools”按钮之后,系统会自动打开 Dart DevTools 的网页,将顶部的 tab 切换到 Performance 后,我们就可以开始分析代码中的性能问题了。

Flutter 应用性能检测与优化_第3张图片
接下来,我们通过一个在 ListView 中计算 MD5 的例子来演示 Performance 的具体分析过程。考虑到在 build 函数中进行渲染信息的组装是一个常见的操作,为了演示Performance的使用过程,我们故意放大计算 MD5 的耗时,如循环迭代计算了 1 万次。


class MyHomePage extends StatelessWidget {
  MyHomePage({Key key}) : super(key: key);

  String generateMd5(String data) {
    //MD5固定算法
    var content = new Utf8Encoder().convert(data);
    var digest = md5.convert(content);
    return hex.encode(digest.bytes);
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(title: Text('demo')),
      body: ListView.builder(
          itemCount: 30,// 列表元素个数
          itemBuilder: (context, index) {
            //反复迭代计算MD5
            String str = '1234567890abcdefghijklmnopqrstuvwxyz';
            for(int i = 0;i<10000;i++) {
              str = generateMd5(str);
            }
            return ListTile(title: Text("Index : $index"), subtitle: Text(str));
          }// 列表项创建方法
      ),
    );
  }
}

与性能图层能够自动记录应用执行情况不同,使用 Performance 来分析代码执行轨迹,我们需要手动点击【Record】按钮去主动触发,在完成信息的抽样采集后再点击【Stop】按钮结束录制,然后就可以得到在这期间应用的执行情况了。

Performance 记录的应用执行情况叫做 CPU 帧图,又被称为火焰图。火焰图是基于记录代码执行结果所产生的图片,用来展示 CPU 的调用栈,表示的是 CPU 的繁忙程度。所以,我们要检测 CPU 耗时问题,皆可以查看火焰图底部的哪个函数占据的宽度最大。只要有“平顶”,就表示该函数可能存在性能问题,如下图所示。
Flutter 应用性能检测与优化_第4张图片
可以看到,_MyHomePage.generateMd5 函数的执行时间最长,几乎占满了整个火焰图的宽,而这也与代码中存在的问题是一致的。在找到了问题之后,我们就可以使用 Isolate(或 compute)将这些耗时的操作挪到并发主 Isolate 之外去完成了。

总结

在 Flutter 中,性能分析过程可以分为 GPU 线程问题定位和 UI 线程(CPU)问题定位,而它们都需要在真机上以分析模式(Profile)启动应用,并通过性能图层分析大致的渲染问题范围。
一旦确认问题存在,接下来就需要利用 Flutter 所提供的分析工具来定位问题原因了。关于 GPU 线程渲染问题,我们可以重点检查应用中是否存在多视图叠加渲染,或是静态图像反复刷新的现象。而 UI 线程渲染问题,我们则是通过 Performance 工具记录的火焰图(CPU 帧图),分析代码耗时来找出应用执行瓶颈。

总的来说,由于 Flutter 采用基于声明式的 UI 设计理念,以数据驱动渲染,并采用 Widget->Element->RenderObject 三层结构,屏蔽了无谓的界面刷新,能够保证绝大多数情况下我们构建的应用都是高性能的,所以在使用分析工具检测出性能问题之后,通常我们并不需要做太多的细节优化工作,只需要在改造过程中避开一些常见的坑,就可以获得优异的性能。同时,为了避免造成性能问题,还应该从以下几个方面着手:

  • 控制 build 方法耗时,将 Widget 拆小,避免直接返回一个巨大的 Widget,这样 Widget 会享有更细粒度的重建和复用;
  • 尽量不要为 Widget 设置半透明效果,而是考虑用图片的形式代替,这样被遮挡的 Widget 部分区域就不需要绘制了;
  • 对列表采用懒加载而不是直接一次性创建所有的子 Widget,这样视图的初始化时间就减少了。

你可能感兴趣的:(flutter,前端)