Android的消息机制

好奇害死猫-思考题:

  1. ViewRootImpl如何验证UI操作是否来自于UI线程?
  2. Android系统为什么限制子线程进行UI操作?
  3. Handler创建时会采用当前线程的Looper来构建内部的消息循环系统,如果当前线程没有Looper会报什么样的错误?如何解决这个问题?
  4. ThreadLocal的工作原理和使用场景。

Handler简介

Handler是Android消息机制的上层接口;通过Handler可以轻松的将一个任务切换到Handler所在的线程中去执行。具体的使用场景如下:

有时候需要在工作线程执行耗时的I/O操作,操作完成后需要在UI上做出一些响应,
由于安卓开发规范的限制工作线程是不能直接访问UI控件的,
否则就会触发系统异常。这个时候可以通过在主线程中创建的Handler将更新UI的操作切换到主线程中执行。

本质上来说,Handler并不是专门用于更新UI的,他只是常常被开发者用于更新UI。

Handler的运行机制

Android的消息机制主要是指Handler的运行机制。
Handler的运行需要底层MessageQueueLooper的支撑。

Message:消息对象;
MessageQueue:消息队列。内部存储一组消息,以队列的形式对外提供插入(enqueueMessage)和移除(next)的接口;实质上是采用单链表(插入和删除比较有优势)的结构存储消息列表。
Looper:消息循环对象。Looper会以无限循环的形式去查找是否有新的消息,有则处理,否则就一直处于wait状态。(Looper怎么保证每个线程只存在一个 ThreadLocal的相关概念)

Android的消息机制_第1张图片
Hanlder核心类在UML中的体现

以上的主要的组成单元了解完毕之后,剩下的部分就是详细的了解。Handler是如何有机的将这些整合在一起的。(这里着重源码层面的分析)

Handler核心类的源码分析

构造器部分

从源码来看Handler具有7个构造器,看起来Handler构造器很复杂,其实不然。实际上Hanlder只有两个真正的构造器,其他的5个均为缺省构造器,即通过this方法来调用两个真实的构造器。

    public Handler() {
        this(null, false);
    }

    public Handler(Callback callback) {
        this(callback, false);
    }

    public Handler(Looper looper) {
        this(looper, null, false);
    }

    public Handler(Looper looper, Callback callback) {
        this(looper, callback, false);
    }

    public Handler(boolean async) {
        this(null, async);
    }

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

    public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

如上图所示,五个缺省的构造器,旨在为在不同的应用场景下创建Handler提供快捷构造的方案。根据使用场景可以大致分为两种场景:

  1. 不需要传入Looper对象的主线程;
  2. 需要传入Looper对象的工作线程(工作线程中,创建Handler进行线程间通信);

主线程创建时用到的构造器分析

    public Handler(Callback callback, boolean async) {
        //if 里面的代码旨在检测潜在内存泄漏的代码,默认是关闭状态(FIND_POTENTIAL_LEAKS:false)
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }
        //根据Looper类的静态方法来获取当前的Looper对象,如果获取的对象is null 则会运行时报异常
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        //通用赋值代码
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

这里需要注意的是Looper类中的静态方法myLooper()的实现细节,因为涉及到了面试中常问的ThreadLocal的工作原理和使用场景,面试中一定要注意。

   /**
    * Return the Looper object associated with the current thread.  Returns
    * null if the calling thread is not associated with a Looper.
    * 大致意思:该方法返回与当前线程相关联的Looper对象,如果当前线程没有关联的Looper对象,则返回null
    */
   public static @Nullable Looper myLooper() {
       return sThreadLocal.get();
   }

在这个主线程使用的Handler构造器中不需要传入Looper的原因是因为主线程在应用启动的时候已经为我们创建了Looper对象了。这样的一个话的结论未免有些空洞,下面的代码可以说明这一点。

    //本方法位于AcitivityThread类中,主线程在这里创建了Looper对象并执行了loop方法
    public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        SamplingProfilerIntegration.start();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        Process.setArgV0("");
        
        //创建Looper对象
        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);

        //开启loop进行轮询
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }
    /**
     * Initialize the current thread as a looper, marking it as an
     * application's main looper. The main looper for your application
     * is created by the Android environment, so you should never need
     * to call this function yourself.  See also: {@link #prepare()}
     * 为当前应用的主线程创建Looper对象,主线程中的Looper必须由安卓环境创建,千万不要在自己的代码里面调用。参见:prepare方法
     */
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }
     /** Initialize the current thread as a looper.
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
      */
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        //ThreadLocal来将Looper与线程进行关联
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

先上结论,分析下Handler中发送消息的代码发现,几乎所有的发送方法都是直接或者间接的调用setMessageAtTime方法实现。这里有一个例外方法sendMessageAtFrontOfQueue,该方法的目的是进入队列的头部,因此将msg.when设置为0(正常情况下when为系统启动时间的毫秒数+delayMillis),通过该操作实现添加到消息队列的队头,除此之外与setMessageAtTime方法并无差别;因此这里着重分析该方法如何将消息存入MessageQueue中。

[图片上传中。。。(9)]
Android的消息机制_第2张图片
无论是send Mesage或者post Runable对象都是通过这四个方法进行

MessageQueue方法对消息的管理是通过单向链表实现消息队列的管理。进入队列的方法是enqueueMessage(Message msg, long when)。实现细节上,第一种情况为插入队首的情况,如当前队列为null、新插入的Message对象when为0或者小于队首的when属性时。具体代码如下图;第二种情况是遍历队列,插入when小于next.when的位置或者队尾。具体代码如下。

 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {//第一种情况
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {//第二种情况
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

至此插入队列的操作介绍完毕。

消息的轮询机制

Android的消息机制_第3张图片
Handler底层实现离不开Lunix的本地进程通信

Looper中的轮询方法

/**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

MessageQueue中的入队和出队列的方法

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {//本地唤醒的代码
                nativeWake(mPtr);
            }
        }
        return true;
    }

 Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {//等待部分的代码
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

根据轮询(loop)的代码可以发现,一旦messageQueue的next方法返回null,轮询就结束了,如果next方法不堵塞的话,Looper就无法持续的工作。怎么解决这个问题呢。这里就涉及到Linux中的进程间通信的机制-管道(pipe)。原理:在内存中有一个特殊的文件,这个文件有两个句柄(引用),一个是读取句柄,一个是写入句柄。重点就在与mPtr 这个指针。因此MessageQueue的next方法进行堵塞。
消息队列中没有消息则轮询结束,当调用Handler的发送消息的方法进行消息发送时会唤醒Looper进行消息的轮询,具体消息的分发(Handler的CallBack负责)和处理由Handler(handleMessage)来负责。

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

大致流程介绍完毕。

Handler这里其实还是只讲到了源码层面,不算真正的底层实现。真正的底层实现涉及到的Linux知识,还需要进一步的研读。路漫漫其修远兮,吾将上下而求索。

你可能感兴趣的:(Android的消息机制)