Coursera代码笔记:Getting and cleaning data(2)

1. Reading from MySQL

Step 1 - Install MySQL

Step 2 - Install RMySQL - install.packages("RMySQL")

Connecting and listing databases

ucscDb<-dbConnect(MySQL(),user="genome",host="genome-mysql.cse.ucsc.edu")

# 创造句柄

result<-dbGetQuery(ucscDb,"show databases;"); 

#赋值给result

dbDisconnect(ucscDb);

Connecting to hg19 and listing tables

hg19<-dbConnect(MySQL(),user="genome",db="hg19",host="genome-mysql.cse.ucsc.edu")   #连接db

allTables<-dbListTables(hg19)

length(allTables)  #求出db中有多少个表

dbListFields(hg19,"affyU133Plus2")  #求表中有多少列

dbGetQuery(hg19,"select count(*) from affyU133Plus2")  #求表有多少行

Read from the table

affyData<-dbReadTable(hg19,"affyU133Plus2")

head(affyData)

Select a specific subset

query<-dbSendQuery(hg19,"select * from affyU133Plus2 where misMatches between 1 and 3")

affyMis<-fetch(query); 

quantile(affyMis$misMatches)


affyMisSmall<-fetch(query,n=10); 

dbClearResult(query);

Don't forget to close the connection!

dbDisconnect(hg19)


2. HDF5 (Heirarchical data format)

R HDF5 package

source("http://bioconductor.org/biocLite.R")

biocLite("rhdf5")

library(rhdf5)

created=h5createFile("example.h5")created

Create groups

created=h5createGroup("example.h5","foo")

created=h5createGroup("example.h5","baa")

created=h5createGroup("example.h5","foo/foobaa")

h5ls("example.h5")

Write to groups

A=matrix(1:10,nr=5,nc=2)

h5write(A,"example.h5","foo/A")

B=array(seq(0.1,2.0,by=0.1),dim=c(5,2,2))

attr(B,"scale")<-"liter"

h5write(B,"example.h5","foo/foobaa/B")

h5ls("example.h5")

Write a data set

df=data.frame(1L:5L,seq(0,1,length.out=5),  c("ab","cde","fghi","a","s"),stringsAsFactors=FALSE)

h5write(df,"example.h5","df")

h5ls("example.h5")

Reading data

readA=h5read("example.h5","foo/A")

readB=h5read("example.h5","foo/foobaa/B")

readdf=h5read("example.h5","df")

readA

Writing and reading chunks

h5write(c(12,13,14),"example.h5","foo/A",index=list(1:3,1))

h5read("example.h5","foo/A")


3. Webscraping (HTML)

Getting data off webpages - readLines()

con=url("http://scholar.google.com/citations?user=HI-I6C0AAAAJ&hl=en")

htmlCode=readLines(con)

close(con)

htmlCode

Parsing with XML

library(XML)

url<-"http://scholar.google.com/citations?user=HI-I6C0AAAAJ&hl=en"

html<-htmlTreeParse(url,useInternalNodes=T)

xpathSApply(html,"//title",xmlValue)

xpathSApply(html,"//td[@id='col-citedby']",xmlValue)


GET from the httr package

library(httr);

html2=GET(url)

content2=content(html2,as="text")

parsedHtml=htmlParse(content2,asText=TRUE)

xpathSApply(parsedHtml,"//title",xmlValue)

Accessing websites with passwords

pg2=GET("http://httpbin.org/basic-auth/user/passwd",    authenticate("user","passwd"))

pg2

Response [http://httpbin.org/basic-auth/user/passwd]

Status: 200

Content-type: application/json

{

"authenticated": true,

"user": "user"

}

Using handles

google=handle("http://google.com")

pg1=GET(handle=google,path="/")

pg2=GET(handle=google,path="search")

R Bloggers has a number of examples of web scrapinghttp://www.r-bloggers.com/?s=Web+Scraping


4. API (Application Performance Interfaces)

Step1. Creating an application

Step2. Accessing Twitter from R

myapp=oauth_app("twitter",key="yourConsumerKeyHere",secret="yourConsumerSecretHere")

sig=sign_oauth1.0(myapp,token="yourTokenHere",token_secret="yourTokenSecretHere")

homeTL=GET("https://api.twitter.com/1.1/statuses/home_timeline.json",sig)

Converting the json object

json1=content(homeTL)

json2=jsonlite::fromJSON(toJSON(json1))

json2[1,1:4]

httr allowsGET,POST,PUT,DELETErequests if you are authorized, httr works well with Facebook, Google, Twitter, Githb, etc.


5. Reading From other Sources

STATA, SPSS, SAS

Image

GIS

music

你可能感兴趣的:(Coursera代码笔记:Getting and cleaning data(2))