Python数据分析学习


In [20]:data = DataFrame(np.arange(16).reshape((4,4)),

index = ['Ohio','Colorado','Utah','New York'],

columns = ['one','two','three','four'])

In [21]:data

Out[22]:

one  two  three  four

Ohio        0    1      2    3

Colorado    4    5      6    7

Utah        8    9    10    11

New York  12  13    14    15


In [22]:data.ix['Ohio']

Out[23]:

one      0

two      1

three    2

four    3

Name: Ohio, dtype: int32


In [24]: data

Out[24]:

one  two  three  four

Ohio        0    1      2    3

Colorado    4    5      6    7

Utah        8    9    10    11

New York  12  13    14    15

In [25]: data.ix['Ohio'][1]

Out[25]: 1

In [26]: data.ix['Ohio'][1]=100

In [27]: data

Out[27]:

one  two  three  four

Ohio        0  100      2    3

Colorado    4    5      6    7

Utah        8    9    10    11

New York  12  13    14    15

In [28]: data.ix['Ohio',1]=55

In [29]: data

Out[29]:

one  two  three  four

Ohio        0  55      2    3

Colorado    4    5      6    7

Utah        8    9    10    11

New York  12  13    14    15


In [5]: test = DataFrame(np.arange(12.).reshape((4,3)),

...:                  columns=list('bde'),

...:                  index = ['Utah','Ohio','Texas','Oregon'])

In [6]: Series = test.b

In [7]: Series

Out[7]:

Utah      0

Ohio      3

Texas    6

Oregon    9

Name: b, dtype: float64

In [8]: test.b-Series

Out[8]:

Utah      0

Ohio      0

Texas    0

Oregon    0

Name: b, dtype: float64

当数据索引不是整数时:

利用标签切片运算与普通的Python切片运算不同,末端是包含的


In [47]: test

Out[47]:

b  d  e

Utah    0  1  2

Ohio    3  4  5

Texas  6  7  8

Oregon  9  10  11

In [48]: test[:2]

Out[48]:

b  d  e

Utah  0  1  2

Ohio  3  4  5

In [49]: test.ix[0:2]

Out[49]:

b  d  e

Utah  0  1  2

Ohio  3  4  5

In [50]: test[:'Texas']

Out[50]:

b  d  e

Utah  0  1  2

Ohio  3  4  5

Texas  6  7  8

In [51]: test.ix[:'Texas']

Out[51]:

b  d  e

Utah  0  1  2

Ohio  3  4  5

Texas  6  7  8

当数据索引不是整数时:


In [52]: df

Out[52]:

0        1        2

0 -1.003236      NaN      NaN

1 -2.312056      NaN      NaN

2  0.473058      NaN      NaN

3  0.716591      NaN  1.066437

4 -0.183461      NaN -0.386878

5 -0.455206 -0.270473 -0.037796

6 -0.232490 -0.208851 -0.077866

In [53]: df[:4]

Out[53]:

0  1        2

0 -1.003236 NaN      NaN

1 -2.312056 NaN      NaN

2  0.473058 NaN      NaN

3  0.716591 NaN  1.066437

In [54]: df.ix[0:4]  #索引跟标签名字一样时

Out[54]:

0  1        2

0 -1.003236 NaN      NaN

1 -2.312056 NaN      NaN

2  0.473058 NaN      NaN

3  0.716591 NaN  1.066437

4 -0.183461 NaN -0.386878

你可能感兴趣的:(Python数据分析学习)