上篇文章中讲完了如何配置免密码登录的问题,现在讲述下,三个节点的环境配置过程。
所需要的hadoop-2.7.3.tar.gz 、 jdk-7u79-linux-x64.tar.gz 、 scala-2.11.6.tgz 、 spark-2.0.1-bin-hadoop2.7.tgz 可以点击这里获取,资源存放在百度云盘。
首先需要在三个节点中分别创建spark目录
master节点、worker1节点、worker2节点同时执行:下面以master节点为例,部分操作worker1与worker2不需要执行,不需要worker1,worker2执行的将给出注释,请仔细看清。
spark@master:~/.ssh$ cd .. spark@master:~$ mkdir spark
注意所创建的spark目录属于spark用户,hadoop组
spark@master:~$ cd spark/
在这里要介绍一个工具winSCP,功能是能够在windows 与ubuntu 之间传递文件,之所以不推荐使用lrzsz包中的rz 进行传递是因为rz只能够传递比较小的文件,对于大的文件,使用这个将会传递失败,有趣的是可以使用命令sudo rz 进行传递,但是,当上传之后,你可以看到所上传的文件所属的用户将变成了root,这将会导致后面配置的错误。因此,必须使用winSCP进行传递。winSCP也在刚才的百度云盘中。
上图显示了winSCP工具界面,根据自己的文件目录进行上传,或者可以直接拖
依次对上传的包进行解压,注意:在worker1和worker2中只需上传jdk-7u79-linux-x64.tar.gz 、 scala-2.11.6.tgz ,而在master中则要全部上传四个文件
spark@master:~/spark$ tar -zxvf hadoop-2.7.3 #只在master节点执行
spark@master:~/spark$ tar -zxvf jdk-7u79-linux-x64.tar.gz #三个节点都要执行
spark@master:~/spark$ tar -zxvf scala-2.11.6.tgz #三个节点都要执行
spark@master:~/spark$ tar -zxvf spark-2.0.1-bin-hadoop2.7.tgz #只在master节点执行
解压之后,为方便调用,建立软连接
spark@master:~/spark$ ln -s hadoop-2.7.3 hadoop #只在master节点执行 spark@master:~/spark$ ln -s jdk1.7.0_79/ jdk #三个节点都要执行 spark@master:~/spark$ ln -s scala-2.11.6 scala #三个节点都要执行 spark@master:~/spark$ ln -s spark-2.0.1-bin-hadoop2.7 spark #只在master节点执行
切换到root下进行环境配置
spark@master:~/spark$ sudo su [sudo] password for spark: root@master:/home/spark/spark# vim /etc/profile
在文件最底部添加:
export JAVA_HOME=/home/spark/spark/jdk #三个节点都要添加 export SCALA_HOME=/home/spark/spark/scala #三个节点都要添加 export HADOOP_HOME=/home/spark/spark/hadoop #三个节点都要添加 export SPARK_HOME=/home/spark/spark/spark #三个节点都要添加 export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop export PATH=$PATH:$JAVA_HOME/bin:$SCALA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SPARK_HOME/bin
保存,使其生效,并退回到spark用户
root@master:/home/spark/spark# source /etc/profile root@master:/home/spark/spark# exit exit spark@master:~/spark$
至此可以查看下java环境,scala,hadoop 环境是否已经安装成功
spark@master:~/spark$ java -version java version "1.7.0_79" Java(TM) SE Runtime Environment (build 1.7.0_79-b15) Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)
java环境已经配置成功
spark@master:~/spark$ scala -version Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL
scala已经配置成功
至此上述是三个节点同时执行的。
接下来,master节点上的配置
spark@master:~/spark$ hadoop version Hadoop 2.7.3 Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r baa91f7c6bc9cb92be5982de4719c1c8af91ccff Compiled by root on 2016-08-18T01:41Z Compiled with protoc 2.5.0 From source with checksum 2e4ce5f957ea4db193bce3734ff29ff4 This command was run using /home/spark/spark/hadoop-2.7.3/share/hadoop/common/hadoop-common-2.7.3.jar
hadoop环境成功
接下来开始配置hadoop
spark@master:~/spark$ cd hadoop/etc/hadoop/ spark@master:~/spark/hadoop/etc/hadoop$ vim slaves
删除里面内容,并添加一下内容:
保存即可
依照下述命令进行文件的更改
spark@master:~/spark/hadoop/etc/hadoop$ vim hadoop-env.sh
添加或更改文件中相关的变量,本人在这个地方踩了不少坑,如果不添加,会在后面报错。
添加完毕后,记得保存。
spark@master:~/spark/hadoop/etc/hadoop$ vim core-site.xml
添加内容到
内容如下:
fs.default.name hdfs://master:9000 The name of the default file system. A URI whose scheme and authority determine the FileSystem implementation. The uri's scheme determines the config property (fs.SCHEME.impl) naming the FileSystem implementation class. The uri's authority is used to determine the host, port, etc. for a filesystem. hadoop.tmp.dir /home/spark/spark/hadoop/tmp A base for other temporary directories.
spark@master:~/spark/hadoop/etc/hadoop$ vim hdfs-site.xml
添加内容到
内容如下:
dfs.replication 3 Default block replication.The actual number of replications can be specified when the file iscreated.The default is used if replication is not specified in create time.
spark@master:~/spark/hadoop/etc/hadoop$ vim yarn-site.xml
添加内容到
内容如下:
yarn.resourcemanager.hostname master yarn.nodemanager.aux-services mapreduce_shuffle
spark@master:~/spark/hadoop/etc/hadoop$ vim mapred-site.xml spark@master:~/spark/hadoop/etc/hadoop$ cp mapred-site.xml.template mapred-site.xml
添加内容到
内容如下: 然后执行cp mapred-site.xml.template mapred-site.xml
mapreduce.framework.name yarn The runtime framework for executing MapReduce jobs. Can be one of local, classic or yarn.默认是local,适合单机
spark@master:~/spark/hadoop/etc/hadoop$ vim yarn-site.xml
添加内容到
内容如下:
yarn.resourcemanager.hostname master yarn.nodemanager.aux-services mapreduce_shuffle
spark@master:~/spark/hadoop/etc/hadoop$ vim yarn-env.sh
添加以下内容在文件中地开始
export JAVA_HOME=/home/spark/spark/jdk export YARN_PID_DIR=/home/spark/spark/hadoop/tmp/pid
保存文件,注意有些hadoop参考可能会提前将 /home/spark/spark/hadoop/tmp 文件夹建好,但在此版本中不需要提前创建,,因为在hadoop初始化时,会自动创建,若是提前创建,则有可能会在启动hadoop集群时报错!
切换到worker1节点中
执行
spark@worker1:~/spark$ scp -r spark@master:/home/spark/spark/hadoop ./hadoop
注意:./hadoop,代表将master中spark用户下的/home/spark/spark/hadoop复制为hadoop,此名称要跟之前在/etc/profile中设置的hadoop环境变量名称一致。
在worker1中做下测试。
spark@worker1:~/spark$ hadoop version Hadoop 2.7.3 Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r baa91f7c6bc9cb92be5982de4719c1c8af91ccff Compiled by root on 2016-08-18T01:41Z Compiled with protoc 2.5.0 From source with checksum 2e4ce5f957ea4db193bce3734ff29ff4 This command was run using /home/spark/spark/hadoop/share/hadoop/common/hadoop-common-2.7.3.jar
显示成功
切换到worker2节点中
spark@worker2:~/spark$ scp -r spark@master:/home/spark/spark/hadoop ./hadoop
在worker2下做下测试。
spark@worker2:~/spark$ hadoop version Hadoop 2.7.3 Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r baa91f7c6bc9cb92be5982de4719c1c8af91ccff Compiled by root on 2016-08-18T01:41Z Compiled with protoc 2.5.0 From source with checksum 2e4ce5f957ea4db193bce3734ff29ff4 This command was run using /home/spark/spark/hadoop/share/hadoop/common/hadoop-common-2.7.3.jar
显示成功
初始化hadoop集群
spark@master:~/spark/hadoop/etc/hadoop$ hadoop namenode -format
若红色方框中的status为0则代表初始化成功,若为1,则为失败
启动集群
spark@master:~/spark/hadoop/etc/hadoop$ $HADOOP_HOME/sbin/start-all.sh
然后在浏览器中输入 http://master_ip:50070/ master_ip代表master的ip地址端口号为50070
至此,hadoop集群已全部安装完毕。
我们将在下一篇文章中,进一步安装spark集群。。。。