题面
洛谷P4389
解析
每一个物品可以看作一个多项式$f(x)=\sum_{i=0}^{\infty}[i\%V==0]x^i=\frac{1}{1-x^V}$,暴力把$n$个多项式乘起来是$O(NM\log M)$的复杂度,显然不能接受。
于是看了下题解,学了一手奇技淫巧。
设$h(x)=\ln(x)$, $g(x)=\ln(f(x))=h(f(x))$,有:$$\begin{align*}g'(x)&=h'(f(x))f'(x)\\ &=\frac{f'(x)}{f(x)}\\&=\frac{\sum_{i=1}^{\infty}[i\%V==0]i \cdot x^{i-1}}{\frac{1}{1-x^V}}\\ &=(1-x^V)\sum_{i=1}^{\infty}Vi \cdot x^{Vi-1}\\ &= \sum_{i=1}^{\infty}Vi \cdot x^{Vi-1}-\sum_{i=1}^{\infty}Vi \cdot x^{V(i+1)-1}\\ &= \sum_{i=1}^{\infty}Vi \cdot x^{Vi-1}-\sum_{i=2}^{\infty}V(i-1) \cdot x^{Vi-1}\\ &= \sum_{i=1}^{\infty}Vi \cdot x^{Vi-1}-\sum_{i=2}^{\infty}Vi \cdot x^{Vi-1} + \sum_{i=2}^{\infty}V\cdot x^{Vi-1}\\ &= \sum_{i=1}^{\infty}V\cdot x^{Vi-1}\end{align*}$$
则:$$g(x)=\sum_{i=1}^{\infty}\frac{1}{i}x^{Vi}$$
而$f(x)=e^{g(x)}$,最终答案为:$$ans=\prod_{i=1}^n f_i(x)\\ ans= \prod_{i=1}^n e^{g_i(x)}\\ ans = e^{\sum_{i=1}^n g_i(x)}$$
对每个不同体积求$g(x)$之和的时间是$O(M \ln M)$,最后$exp$的时间是$O(M \log M)$,因此总时间为$O(M\ln M+M\log M)$
代码:
#include#include #include #include using namespace std; typedef long long ll; const int maxn = 200005, mod = 998244353, g = 3; inline int read() { int ret, f=1; char c; while((c=getchar())&&(c<'0'||c>'9'))if(c=='-')f=-1; ret=c-'0'; while((c=getchar())&&(c>='0'&&c<='9'))ret=(ret<<3)+(ret<<1)+c-'0'; return ret*f; } int add(int x, int y) { return x + y < mod? x + y: x + y - mod; } int rdc(int x, int y) { return x - y < 0? x - y + mod: x - y; } ll qpow(ll x, int y) { ll ret = 1; while(y) { if(y&1) ret = ret * x % mod; x = x * x % mod; y >>= 1; } return ret; } int n, m, num[maxn], lim, bit, rev[maxn<<1]; ll ginv, ln[maxn<<1], iv[maxn<<1], inv[maxn], F[maxn<<1], G[maxn<<1], c[maxn<<1]; void init() { ginv = qpow(g, mod - 2); inv[0] = inv[1] = 1; for(int i = 2; i <= m; ++i) inv[i] = (mod - mod / i) * inv[mod%i] % mod; } void NTT_init(int x) { lim = 1; bit = 0; while(lim <= x) { lim <<= 1; ++ bit; } for(int i = 1; i < lim; ++i) rev[i] = (rev[i>>1] >> 1) | ((i & 1) << (bit - 1)); } void NTT(ll *x, int y) { for(int i = 1; i < lim; ++i) if(i < rev[i]) swap(x[i], x[rev[i]]); ll wn, w, u, v; for(int i = 1; i < lim; i <<= 1) { wn = qpow((y == 1)? g: ginv, (mod - 1) / (i << 1)); for(int j = 0; j < lim; j += (i << 1)) { w = 1; for(int k = 0; k < i; ++k) { u = x[j+k]; v = x[j+k+i] * w % mod; x[j+k] = add(u, v); x[j+k+i] = rdc(u, v); w = w * wn % mod; } } } if(y == -1) { ll linv = qpow(lim, mod - 2); for(int i = 0; i < lim; ++i) x[i] = x[i] * linv % mod; } } void get_inv(ll *x, ll *y, int len) { if(len == 1) { x[0] = qpow(y[0], mod - 2); return ; } get_inv(x, y, (len + 1) >> 1); for(int i = 0; i < len; ++i) c[i] = y[i]; NTT_init(len << 1); NTT(x, 1); NTT(c, 1); for(int i = 0; i < lim; ++i) { x[i] = rdc(add(x[i], x[i]), (c[i] * x[i] % mod) * x[i] % mod); c[i] = 0; } NTT(x, -1); for(int i = len; i < lim; ++i) x[i] = 0; } void get_ln(ll *x, ll *y, int len) { for(int i = 0; i < len - 1; ++i) x[i] = y[i+1] * (i + 1) % mod; get_inv(iv, y, len); NTT_init(len << 1); NTT(x, 1); NTT(iv, 1); for(int i = 0; i < lim; ++i) { x[i] = x[i] * iv[i] % mod; iv[i] = 0; } NTT(x, -1); for(int i = len - 1; i >= 1; --i) x[i] = x[i-1] * qpow(i, mod - 2) % mod; x[0] = 0; for(int i = len; i < lim; ++i) x[i] = 0; } void get_exp(ll *x, ll *y, int len) { if(len == 1) { x[0] = 1; return ; } get_exp(x, y, (len + 1) >> 1); get_ln(ln, x, len); for(int i = 0; i < len; ++i) { c[i] = rdc(add(i == 0, y[i]), ln[i]); ln[i] = 0; } NTT_init(len << 1); NTT(x, 1); NTT(c, 1); for(int i = 0; i < lim; ++i) { x[i] = x[i] * c[i] % mod; c[i] = 0; } NTT(x, -1); for(int i = len; i < lim; ++i) x[i] = 0; } int main() { n = read(); m = read(); init(); int x; for(int i = 1; i <= n; ++i) { x = read(); ++ num[x]; } for(int i = 1; i <= m; ++i) if(num[i]) { for(int j = 1; i * j <= m; ++j) G[i*j] = add(G[i*j], num[i] * inv[j] % mod); } get_exp(F, G, m + 1); for(int i = 1; i <= m; ++i) printf("%lld\n", F[i]); return 0; }