- 如何在Linux中查询 DNS 记录,这三个命令可谓是最常用、最经典的三剑客
wljslmz
Linux技术linux运维服务器DNS
在进入正题之前,先聊聊为什么我们需要检查DNS记录。DNS是互联网的基石,它负责把域名解析成IP地址,确保你的浏览器能找到目标服务器。如果DNS出问题,可能导致网站打不开、邮件发不出去,甚至某些服务完全瘫痪。在Linux终端检查DNS记录,可以帮你:诊断网络问题:网站访问不了?可能是DNS解析出了岔子。验证配置:刚设置好一个域名,想确认MX记录是否正确指向邮件服务器。学习和探索:搞清楚某个域名背后
- MySql数据库等级考试学习分享3(Day8)
weixin_53545579
学习数据库mysql
题目解析题目:以下关于局部变量的叙述中,错误的是()。选项:A、局部变量只能在BEGIN...END之间声明B、使用SET语句能够为局部变量赋值C、DECLARE能够在声明局部变量的同时指定默认值D、使用SELECTINTO能够将数据表中一列的所有值赋值给局部变量0基础知识点总结1.局部变量(LocalVariables)的定义与特性定义:局部变量是在存储过程、函数或触发器的BEGIN...END
- Python 爬虫体验心得:使用 requests 与 Spider 开启数据探索之旅
爱搬砖的程序猿.
python网络爬虫
一、引言在当今数字化信息爆炸的时代,互联网上蕴含着海量的数据资源。对于开发者、数据分析师等人群而言,如何高效地从网页中提取所需数据成为一项关键技能。Python凭借其丰富的第三方库和简洁易懂的语法,成为了开发网络爬虫的首选语言。其中,requests库为我们处理HTTP请求提供了便捷的方式,而Scrapy框架中的Spider则可以帮助我们构建复杂的爬虫逻辑。本文将带领大家逐步学习如何使用reque
- YOLO11改进-模块-引入多尺度差异融合模块MDFM
一勺汤
YOLOv11模型改进系列深度学习人工智能YOLOYOLOv11目标检测模块改进
遥感变化检测(RSCD)专注于识别在不同时间获取的两幅遥感图像之间发生变化的区域。近年来,卷积神经网络(CNN)在具有挑战性的RSCD任务中展现出了良好的效果。然而,这些方法未能有效地融合双时相特征,也未提取出对后续RSCD任务有益的有用信息。此外,它们在特征聚合中没有考虑多层次特征交互,并且忽略了差异特征与双时相特征之间的关系,从而影响了RSCD的结果。为解决上述问题,本文通过孪生卷积网络提取不
- Spring深度学习 — 关于 Spring
搬运Gong
Springspring
前言作为一名Java程序猿,相信对Spring都不陌生,那么我们经常使用的Spring的发展史大家都了解过吗?它是如何来的?又是如何一步一步成长到了现在这种不可替代的重要地位?下面将对Spring进行一个整体认知和学习,对后面的深度学习起到铺垫作用。本文意在对知识点的温顾,如文中有写的不对的地方,还望不吝指教。一、Spring的发展史相信经历过不使用框架开发Web项目的70后、80后都会高如此感触
- Prompt工程全解析:从入门到精通的终极指南
二川bro
智能AI人工智能prompt
Prompt工程全解析:从入门到精通的终极指南发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc一、Prompt设计核心法则1.1角色定位法则[角色设定]你是一位资深全栈工程师,拥有10年React和Node.js开发经验[任务要求]为电商系统设计购物车模块,要求:1.支持商品增删改查2.实时计算总价
- DG-Manba模型详解及代码复现
清风AI
深度学习计算机视觉pytorch人工智能神经网络
模型特点在DG-Manba模型的基础架构中,其独特的模型特点使其在处理序列数据时展现出卓越的性能。本节将详细介绍DG-Manba模型在架构、功能和性能方面的创新之处。选择性机制DG-Manba模型的核心创新在于其选择性机制。这种机制允许模型根据输入数据的特征动态调整其行为,类似于递归神经网络(RNN)中的门控机制,但在状态空间模型(SSM)的框架下提供了更广泛的应用可能性。通过这种方式,DG-Ma
- 【错误解决】Mockito在JDK 22的兼容性问题
不是聪明的小孩
springbootmybatisplusMockitomybatis
前言:在学习SpringBoot整合MyBatisPlus时,在启动类里添加的@MapperScan注解扫描项目的mapper文件夹相关类的方法,测试时一直出错失败,这样的话学习mybatisplusCRUD的操作也没办法测试运行,我在网上检索相关问题的比较新的参考很少,也和我遇到的问题重叠率不高。相关错误信息:Causedby:[CIRCULARREFERENCE:java.lang.Illeg
- 鸿蒙应用开发(HarmonyOS)自定义装饰器场景
你我皆是牛马星人
鸿蒙开发OpenHarmonyHarmonyOSharmonyos华为鸿蒙androidui前端鸿蒙系统
鸿蒙NEXT开发实战往期必看文章:一分钟了解”纯血版!鸿蒙HarmonyOSNext应用开发!“非常详细的”鸿蒙HarmonyOSNext应用开发学习路线!(从零基础入门到精通)HarmonyOSNEXT应用开发案例实践总结合(持续更新......)HarmonyOSNEXT应用开发性能优化实践总结(持续更新......)介绍本示例介绍通过自定义装饰器在自定义组件中自动添加inspector(布局
- LVPECL(Low Voltage Positive Emitter-Coupled Logic)电平详解
美好的事情总会发生
电平标准接口电平嵌入式硬件硬件工程智能硬件
一、LVPECL的定义与核心特性LVPECL(低电压正射极耦合逻辑)是PECL(正射极耦合逻辑)的低电压版本,专为现代低功耗、高集成度系统优化,采用3.3V或2.5V供电。其继承了PECL的高速性能,同时通过降低电压减少功耗,广泛应用于高速通信、时钟分配和高可靠性场景。1.电气特性供电电压:3.3V(主流)、2.5V(部分器件)。电平范围:差分摆幅:约600mV(峰峰值),单端摆幅±300mV。共
- IDEA中的部分快捷键(后续会学习补充)
铅钇大王
intellij-idea学习java
Alt+Ctrl+L:格式化代码,将代码变成良好格式;Alt+Enter:快速修复;代码出错时可以生成一些正确答案参考psvm:快速生成主方法;publicstaticvoidmain(String[]args){}sout:生成输出语句;System.out.println("");数组名.+for+i:快速生成数组的遍历for语句;例如:for(inti=0;i<数组.length;i++){
- 从0到1掌握Flutter(三)Dart语法
微声G
从0到1掌握Flutterflutter
引言本文接上篇:从0到1掌握Flutter(二)环境搭建与认识工程Dart语言基础是Flutter开发必须掌握的核心知识。本文将讲解变量与常量的声明、Dart内置类型体系及其用法、运算符的应用场景三大模块。对于具备Java/Kotlin背景的学习者,可以通过对比学习法快速定位知识缺口,理解语法的共性。一、变量与常量1.1变量万物皆对象在Dart的类型系统中,变量本质上是指对象的引用,这一设计符合面
- 代码随想录 Day 44 | 【第九章 动态规划part 07】198.打家劫舍、213.打家劫舍II、337.打家劫舍III
Accept17
动态规划算法
一、198.打家劫舍198.打家劫舍视频讲解:动态规划,偷不偷这个房间呢?|LeetCode:198.打家劫舍_哔哩哔哩_bilibili代码随想录1.解题思路(1)dp数组的含义:考虑下标i(包含下标i及之前的房间)所能偷的最大的金币为dp[i]。求dp[len(nums)-1],仅仅是考虑范围,而不是一定偷或不偷。(2)递推公式:两种状态偷/不偷,偷第i个房间(dp[i-2]+dp[i]),不
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- UE4-UE5虚幻引擎,前置学习一--Console日志输出经常崩溃,有什么好的解决办法
avi9111
每天一点u3due4ue5虚幻日志
有些差异这么牛逼的引擎,居然有这种入门级别的问题,一触发清理,大概率(80%)会崩溃无论虚幻5还是UE4都有这个问题,挺烦人的实在忍不了了,这次,今天就想问问有什么好的处理方法么??另外下载第三方日志插件???\=================================这不是一个简单的文档分析这需要你知道Engine.dll和Project.dll的区别这需要你知道一点点游戏开发的框架好像
- 计算机视觉入门
109702008
人工智能#深度学习计算机视觉人工智能
计算机视觉(ComputerVision)是一门涉及使机器能够从图像或者多维数据中提取信息,解释、理解并对物体或场景进行处理的学科。以下是一个基本的计算机视觉入门学习路线,旨在为刚刚接触这一领域的学习者提供指导。1.基础知识储备数学基础:线性代数、概率论和数理统计、微积分、优化理论。编程语言:掌握至少一门编程语言,Python是目前在计算机视觉领域最流行的语言,其次是C++。2.计算机视觉基础数字
- Android手机中各类安全相关知识总结
数据知道
2025年爬虫和逆向教程android智能手机安全
更多内容请见:爬虫和逆向教程-专栏介绍和目录文章目录1.Android安全威胁2.Android安全防护措施3.Android安全建议和最佳实践4.Android安全工具推荐5.Android安全常见问题5.1如何检测设备是否感染恶意软件?5.2如何防止应用滥用权限?5.3如何保护设备免受网络攻击?5.4设备丢失后如何保护数据?6.学习资源7.总结Android手机作为全球使用最广泛的移动操作系统
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- RAG技术深度解析:从基础Agent到复杂推理Deep Search的架构实践
小爷毛毛(卓寿杰)
系统架构与解决方案搜索推荐架构语言模型人工智能自然语言处理
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展一、什么是RAGAgent?1.从信息处理到智能生成在自然语言处
- 解锁命令模式:Java 编程中的解耦神器
编程巫师
设计模式命令模式java开发语言
系列文章目录第一章解锁单例模式:Java世界的唯一实例之道第二章解锁工厂模式:工厂模式探秘第三章解锁代理模式:代理模式的多面解析与实战第四章解锁装饰器模式:代码增强的魔法宝典第五章解锁建造者模式:Java编程中的对象构建秘籍第六章解锁原型模式:Java中的高效对象创建之道第七章解锁适配器模式:代码重构与架构优化的魔法钥匙第八章解锁桥接模式:Java架构中的解耦神器第九章解锁组合模式:Java代码中
- 解锁外观模式:Java 编程中的优雅架构之道
编程巫师
设计模式外观模式java架构
系列文章目录第一章解锁单例模式:Java世界的唯一实例之道第二章解锁工厂模式:工厂模式探秘第三章解锁代理模式:代理模式的多面解析与实战第四章解锁装饰器模式:代码增强的魔法宝典第五章解锁建造者模式:Java编程中的对象构建秘籍第六章解锁原型模式:Java中的高效对象创建之道第七章解锁适配器模式:代码重构与架构优化的魔法钥匙第八章解锁桥接模式:Java架构中的解耦神器第九章解锁组合模式:Java代码中
- 嵌入式学习——3——域套接字UNIX
koka_jerry
学习unix服务器
1、域套接字UNIX1、域套接字是最原始的套接字通信方式,是完成同一主机之间多个进程间通信2、由于不需要跨主机进行通信了,那么就无需使用ip地址和端口号了3、通信本质:依然使用的是内核空间4、域套接字的通信介质为套接字文件bcd-lsp5、域套接字也分为流式域套接字和报式域套接字6、跟网络通信中相关函数的区别#include#includeintsocket(intdomain,inttype,i
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- 解锁适配器模式:代码重构与架构优化的魔法钥匙
编程巫师
设计模式java适配器模式设计模式
系列文章目录第一章解锁单例模式:Java世界的唯一实例之道第二章解锁工厂模式:工厂模式探秘第三章解锁代理模式:代理模式的多面解析与实战第四章解锁装饰器模式:代码增强的魔法宝典第五章解锁建造者模式:Java编程中的对象构建秘籍第六章解锁原型模式:Java中的高效对象创建之道第七章解锁适配器模式:代码重构与架构优化的魔法钥匙第八章解锁桥接模式:Java架构中的解耦神器第九章解锁组合模式:Java代码中
- 机器学习——正则化、欠拟合、过拟合、学习曲线
代码的建筑师
学习记录机器学习机器学习学习曲线过拟合欠拟合正则化
过拟合(overfitting):模型只能拟合训练数据的状态。即过度训练。避免过拟合的几种方法:①增加全部训练数据的数量(最为有效的方式)②使用简单的模型(简单的模型学不够,复杂的模型学的太多),这里的简单指的是不要过于复杂③正则化(对目标函数后加上正则化项):使得这个“目标函数+正则化项”的值最小,即为正则化,用防止参数变得过大(参数值变小,意味着对目标函数的影响变小),λ是正则化参数,代表正则
- 《Operating System Concepts》阅读笔记:p286-p308
操作系统
《OperatingSystemConcepts》学习第28天,p286-p308总结,总计23页。一、技术总结1.reentrantlock(可重入锁)(1)为什么称为reentrantlock?AthreadacquiresaReentrantLocklockbyinvokingitslock()method.Ifthelockisavailable—orifthethreadinvoking
- StarRocks x Demandbase ,助力北美 ABM 营销平台降本 90%!
营销clickhouse
开源无国界,在“StarRocks全球用户精选案例”专栏中,我们将介绍北美营销平台Demandbase的用户案例。Demandbase于2007年创立于美国加州旧金山,专注于AI驱动的ABM平台,助力B2B营销人员实现业务突破。通过将ClickHouse替换为StarRocks,Demandbase解决了性能与灵活性问题。新架构基于ApacheIceberg和StarRocks,显著提升了数据处理
- UDS学习计划
正当少年
UDS学习
以下是一份详细的UDS(UnifiedDiagnosticServices,统一诊断服务)学习计划,涵盖从基础到实战的系统化学习路径,适合初学者和有一定基础的开发者。计划周期为6-8周,每周投入10-15小时。第一阶段:基础认知(1周)学习目标理解UDS的基本概念和应用场景掌握UDS协议的核心组成部分熟悉相关工具的使用学习内容UDS概述UDS的定义与作用(ISO14229标准)应用场景:ECU诊断
- Java开发第一坑:记一次MySQL ON DUPLICATE KEY UPDATE影响行数异常排查:从现象到解决的全过程
猿享天开
javamysql开发语言
记一次MySQLONDUPLICATEKEYUPDATE影响行数异常排查:从现象到解决的全过程一、问题现象:神秘的计数器异常由于学习JAVA开发时间不长,也没有进行系统性学习,由于项目需要就草草的开始了程序开发,在开发医疗影像归档系统时,归档患者影像时需要自动根据数据库操作后的返回值判断是新增插入数据,还是更新数据,但由于返回的影响行数不准确,比如插入1条新数据、更新一条数据或未变化,返回的影响行
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比