- 利用Beautiful Soup和Pandas进行网页数据抓取与清洗处理实战
傻啦嘿哟
pandas
目录一、准备工作二、抓取网页数据三、数据清洗四、数据处理五、保存数据六、完整代码示例七、总结在数据分析和机器学习的项目中,数据的获取、清洗和处理是非常关键的步骤。今天,我们将通过一个实战案例,演示如何利用Python中的BeautifulSoup库进行网页数据抓取,并使用Pandas库进行数据清洗和处理。这个案例不仅适合初学者,也能帮助有一定经验的朋友快速掌握这两个强大的工具。一、准备工作在开始之
- Python:数据从Excel表格链接到Word文档 更新Excel即可自动更新Word
一个花生米生花
pythonexcelword
要使用Python来创建或更新一个Word文档,并将数据从Excel表格链接到Word文档中,你可以使用python-docx库来操作Word文档和openpyxl或pandas库来读取Excel文件。不过,需要注意的是,python-docx库并不支持将外部文件链接到Word文档的功能。你可以在Word文档中插入Excel数据的快照,但它们不会自动更新。如果你想要在Word文档中插入Excel数
- python panda下载_pandas python下载|Pandas for python v0.25.0官方版 v0.25.0官方版 - 哩咯下载站...
weixin_39647458
pythonpanda下载
Pandas是python的数据分析包,最初被作为金融数据分析工具而开发出来,提供pandas.whl包下载,有需要的赶快下载吧!软件介绍Pandas是python的一个数据分析包,最初由AQRCapitalManagement于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被
- python获取金融数据_使用Python获取金融数据
weixin_39545102
python获取金融数据
俗话说,“巧媳妇难为无米之炊”。做金融数据研究,首先要有可用的数据源。Python下,pandas_datareader模块可以用于获取研究数据。例子如下:>>>frompandas_datareader.dataimportDataReader>>>>>>datas=DataReader(name='AAPL',data_source='yahoo',start='2018-01-01')>>>
- Python爬虫实战:获取笔趣阁图书信息,并做数据分析
ylfhpy
爬虫python爬虫数据分析
注意:以下内容仅供技术研究,请遵守目标网站的robots.txt规定,控制请求频率避免对目标服务器造成过大压力!1.环境准备与反爬策略pythonimportrequestsfrombs4importBeautifulSoupimportpandasaspdimportreimporttimeimportrandomfromfake_useragentimportUserAgent#需安装:pip
- python文件操作相关(csv)
Colin♛
pythonpython开发语言学习笔记
python文件操作相关(csv)1.csv模块读取CSV文件读取CSV文件并转换为字典写入CSV文件写入CSV文件并使用字典2.pandas库读取CSV文件读取特定列写入CSV文件写入CSV文件并指定分隔符3.其他高级功能处理大文件读取数据数据清洗参考资料在Python中,操作CSV文件通常使用csv模块和pandas库,这两个工具提供了丰富的功能,可以方便地读取、写入和处理CSV文件1.csv
- Python在实际工作中的运用-拆分Excel表格
老胖闲聊
Pythonexcelpython
每次遇到表格按地区、按行数进行拆分都特别麻烦,每次都搞的头昏眼花,还容易出错,现在有了Python实在是各位“表哥”们的福音,下面我们就按行数和sheet两种场景来说明吧。首先需要安装openpyxl和pandaspipinstallopenpyxlpandas按行数拆分.pyimportopenpyxlimportosxlsfile="E:/表格目录/带拆分表格.xlsx"#加载现有的Excel
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- python高效使用16---sort_values排序需要万分警惕的问题
云金杞
python高效使用方法python开发语言
sort_values函数需要万分警惕的问题背景今天在优化empyrical模块的时候,发现在win11上测试通过的测试用例,在ubuntu18.04上测试失败了,通过定位发现是sort_values惹得祸。在使用pandas.sort_values(by=“value1”)的时候,value1如果有相同值,在默认排序算法下,排序后的结果在windows上和ubuntu上结果可能不一样。例子git
- 【Pandas】pandas Series isin
liuweidong0802
PandasSeriespandaspython
Pandas2.2SeriesComputationsdescriptivestats方法描述Series.align(other[,join,axis,level,…])用于将两个Series对齐,使其具有相同的索引Series.case_when(caselist)用于根据条件列表对Series中的元素进行条件判断并返回相应的值Series.drop([labels,axis,index,co
- 从Pandas DataFrame中删除一列
李星星BruceL
问题集pandaspython
在Pandas中执行此操作的最佳方式是使用drop:df=df.drop('column_name',axis=1)其中1是轴编号(0表示行,1表示列)。或者,drop()方法接受index/columns关键字作为指定轴的替代方法。因此,我们现在可以只做:df=df.drop(columns=['column_nameA','column_nameB'])要删除列而不必重新分配df,可以执行以下
- 使用Python编写你的第一个算法交易程序
盼达思文体科创
Python量化金融python算法numpycondapandas金融
背景Background最近想学习一下量化金融,总算在盈透投资者教育(IBKRCampus)板块找到一篇比较好的算法交易入门教程。我在记录实践过程后,翻译成中文写成此csdn博客,分享给大家。如果你的英语好可以直接看原文。原文在数据准备阶段,采用了pandas_datareader.data读取网络数据,实际中出现了很多问题,我换成了yfinance。可以参考文末完整代码。参考资料:https:/
- 机器学习基本库之Pandas
莫 名 其 妙
pandas机器学习python数据分析
Pandas是机器学习中专门用于数据处理的库,遇到很多数据时首先要使用Pandas进行预处理得到我们想要的信息,下面让我们来看一下Pandas中有哪些操作importpandasfood_info=pandas.read_csv("food_info.csv")#将csv文件中的数据进行读取print(type(food_info))#pandas中的核心结构叫做DATAFRAMEprint(fo
- python_excel批量插入图片
ramsey17
pythonexcel
提取excel的指定列的值的后4位(数值),在其它列名的单元格中,批量嵌入与该数值匹配的图片(未实现居中),每间隔4行处理一次(合并过单元格)。importpandasaspdfromopenpyxlimportload_workbookfromopenpyxl.drawing.imageimportImagefromopenpyxl.utilsimportget_column_letterimp
- bug 系列 expected <class ‘openpyxl.styles.fills.Fill‘>
SHolmes1854
python
expectedpandas这个读取excel是为啥改用openxyl也不行,最后,看别人说的,把这个文档另存为居然就可以了…然后我发现居然真的可以
- 如何提升爬虫获取数据的准确性?
小爬虫程序猿
爬虫
提升爬虫获取数据的准确性是确保数据分析和后续应用有效性的关键。以下是一些经过验证的方法和最佳实践,可以帮助提高爬虫数据的准确性:1.数据清洗数据清洗是提升数据准确性的重要步骤,主要包括去除重复数据、处理缺失值和异常值。去除重复数据:重复数据会影响分析结果的准确性,可以通过pandas库的drop_duplicates()方法删除重复数据。importpandasaspddf=pd.DataFram
- python sympy安装_如何为Python 3.4安装sympy
weixin_39574720
pythonsympy安装
我使用从here获取的以下命令安装了Pythonscipy堆栈sudoapt-getinstallpython-numpypython-scipypython-matplotlibipythonipython-notebookpython-pandaspython-sympypython-nose但是,我只能在Python2.7.6中导入sympy,这是我在终端输入python时的默认Python
- Pandas使用教程 - 多级索引 (MultiIndex)
闲人编程
Pandas使用教程pandasMultiIndex多级索引元组分组聚合python
目录1.什么是MultiIndex?2.MultiIndex的创建2.1从多个数组或列表创建MultiIndex2.2从元组列表创建MultiIndex2.3使用DataFrame的set_index()创建MultiIndex3.MultiIndex的基本操作3.1索引与切片3.1.1访问特定级别的数据3.1.2使用xs()方法进行跨层次切片3.2重新排列和重设索引3.2.1swaplevel(
- 30.4:Python如何安装Pandas库? (课程共4100字)
小兔子平安
Python完整学习全解答pythonpandas开发语言
课程概述(课程共4100字)①安装Pandas库打开命令提示符或终端窗口,输入以下命令来安装Pandas:当安装完成后,可以使用以下命令来验证Pandas是否已正确安装:②数据处理和分析读写数据数据清洗和预处理数据分组和聚合数据可视化③Python学习的深入讨论Python的应用领域Python的优点和缺点学习Python的建议学习Python的挑战课程总结课程概述Python是一种功能强大的编程
- (pandas)常用版本和重要更新
Marst·Zhang
第三方库pandas
前言记录每次pandas库的重要更新,记录每次版本的变化内容.尽可能的记录函数的删改。每次从别人的项目中汲取经验时,难免会遇到不顺利的地方。为方便自己查阅,记录遇到的问题.目录Pandas库历史版本的主要更新和函数变化的示例Pandas库历史版本的主要更新和函数变化的示例Pandas0.23.0(2018年5月发布):引入了Nullable整数数据类型(pd.NA)。引入了新的字符串方法,如str
- Pandas与Python数据类型对应表
南希圆子
pythonpycharmpytorch
作为初学者,要注意pands与python数据类型是不一样的,如object数据类型对应的是Python的字符型
- Py的Pandas:Python pandas库的详细介绍、安装和使用方法
追逐程序梦想者
pandaspython数据分析
Py的Pandas:Pythonpandas库的详细介绍、安装和使用方法Pandas是一个Python的数据处理库,它提供了快速、灵活、易用且高效的数据结构来进行数据操作。在数据挖掘、数据分析等领域中,Pandas被广泛应用。本文主要介绍Pandas的安装、基本数据结构、数据读写、数据统计以及数据可视化等方面。安装在命令行中使用pip工具安装Pandas:pipinstallpandas基本数据结
- Python 和 Pandas 版本的对应关系
Distantfbc
pythonpandas开发语言
在使用Python和Pandas时,确保它们的版本兼容是非常重要的。以下是Python和Pandas版本的对应关系,帮助你选择合适的版本。安装示例如果你使用的是Python3.9,并希望安装与之兼容的Pandas版本,可以使用以下命令:pipinstallpandas==1.3.0#安装Pandas1.3.x版本检查当前版本你可以使用以下代码检查当前安装的Python和Pandas版本:impor
- pandas(02 pandas基本功能和描述性统计)
twilight ember
pandaspython开发语言
前面内容:pandas(01入门)目录一、PythonPandas基本功能1.1Series基本功能1.2DataFrame基本功能二、PythonPandas描述性统计2.1常用函数*2.2汇总数据(describe)*一、PythonPandas基本功能到目前为止,我们已经学习了三种Pandas数据结构以及如何创建它们。我们将主要关注DataFrame对象,因为它在实时数据处理中非常重要,并讨
- 使用 Python 将爬取的内容保存到 Excel 表格
木觞清
pythonexcel开发语言
在数据爬取的过程中,很多时候我们需要将爬取到的内容保存到Excel表格中,以便进一步处理、分析和可视化。Python提供了强大的库来实现这一功能,常用的有requests、BeautifulSoup用于网页内容的爬取,以及pandas、openpyxl用于将数据保存到Excel文件。本文将带你一步步完成从爬取数据到保存到Excel文件的整个过程。1.安装必要的库首先,你需要安装一些Python库。
- Anaconda3 介绍和安装
gorgor在码农
#python入门基础pythonconda
介绍Anaconda是一个开源的Python和R语言发行版,专注于数据科学、机器学习和科学计算,主要面向数据科学和机器学习领域。它集成了大量常用的科学计算库(如NumPy、Pandas、Matplotlib、Scikit-learn等),并提供了强大的包管理工具Conda和环境管理功能,适合快速部署和管理复杂的开发环境。特点:预装丰富库:包含250+常用的数据科学工具包,无需手动安装。跨平台支持:
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 利用Python进行数据清洗与预处理:Pandas的高级用法
步入烟尘
python数据库开发语言
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- Python Pandas数据清洗之缺失数据处理
python慕遥
Pandaspythonpandas开发语言
大家好,在数据分析和处理过程中,缺失数据是常见且不可避免的现象。无论是在数据收集、传输或存储的过程中,数据集可能会出现部分丢失。缺失数据的存在不仅会影响数据的完整性,还可能对后续的数据分析和建模造成不利影响。为了保证数据质量,合理处理缺失数据至关重要。Python的Pandas库提供了强大的工具,能够高效处理数据中的缺失值,特别是通过插值和填充技术来弥补数据的缺失。本文将介绍如何使用Pandas处
- 利用Python pandas 数据清洗详细教程
小白教程
python运维数据库pythonpandas开发语言
文章目录前言一、环境搭建1.下载Python2.安装Python3使用pip安装Pandas二、使用步骤1.读取数据2.处理缺失值3.处理重复值4.处理异常值5.数据类型转换6.处理不一致的数据前言pandas是Python数据处理与分析的得力工具,功能强大,是数据从业者进行数据清洗的首选。本教程将系统介绍用pandas进行数据清洗,涵盖数据读取、缺失值与重复值处理、异常值修正、数据类型转换等要点
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep