05 ML 朴素贝叶斯入门

代码来自: ML In Action

from numpy import *
import re

def load_dataset():
    post_list =[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classes = [0,1,0,1,0,1]  # 垃圾与非垃圾邮件
    return post_list, classes

# 创建词汇表
# 集合的并集 相当于把 dataset 中的数据去重
def create_vocab_list(dataset):
    vocab_set = set([])   
    for document in dataset:
        vocab_set = vocab_set | set(document) 
    return list(dataset)

# 把 input_set 中在 vocab_list 的返回来 
# 这个就是返回了 input_set 中各个词 在 词汇表中的位置
# 将单词转换为数字 便于计算
# -> [0, 0, 1, 0, 0, 1, 1....]
def words_to_vector(vocab_list, input_set):
    vector = [0]*len(vocab_list) # 为0的向量
    for word in input_set:
        if word in vocab_list:
            vector[vocab_list.index(word)] = 1 
        else: 
            print "the word: %s is not in my Vocabulary!" % word
    return vector

# 朴素贝叶斯通常有 贝努利模型实现和多项式模型实现
# 朴素贝叶斯分类器训练函数
# trainMatrix 为 word 转换后的数字 matrix 方便计算
# trainCategory [0,1,0,1,0,1]
def train_NB0(trainMatrix, trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])

    pAbusive = sum(trainCategory)/float(numTrainDocs) # 辱骂性的概率
    p0Num = ones(numWords)      # 初始化概率 初始化为1
    p1Num = ones(numWords)      #change to ones() 

    p0Denom = 2.0 # 防止出现0向量的时候 结果为0
    p1Denom = 2.0                        #change to 2.0

    for i in range(numTrainDocs):
        if trainCategory[i] == 1:          # 根据类别来统计
            p1Num += trainMatrix[i]        # 向量相加 每个分向量相加
            p1Denom += sum(trainMatrix[i]) # 总的词数也相加 
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])

    p1Vect = log(p1Num/p1Denom)   # 防止一堆小数溢出
    p0Vect = log(p0Num/p0Denom)     
    return p0Vect,p1Vect,pAbusive

# 贝叶斯决策
def classify_NB(vec2Classify, p0Vec, p1Vec, pClass1):
    # 这里 log + log 实际上就是 ln(x * y)
    # 先计算出分向量的概率和
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)   
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0

def testing_NB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))

    p0V,p1V,pAb = train_NB0(array(trainMat),array(listClasses))

    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)

    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)

# 词袋模型 一个词可能在文档中出现多次
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

def textParse(bigString):    #input is big string, #output is word list
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] 

# 测试的邮件数据地址: 
# https://github.com/start-program/machinelearninginaction/blob/master/Ch04/email.zip
def spam_test():
    docList=[]
    classList = []
    fullText =[]

    # 导入解析的文本文件
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)

        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    print('parse ham and spam success..')

    # 随机构建训练集
    vocabList = create_vocab_list(docList)#create vocabulary

    print('create_vocab_list success..')

    trainingSet = range(50)
    testSet=[]           #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  

    trainMat=[]
    trainClasses = []

    for docIndex in trainingSet: 
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    print('bagOfWords2VecMN success..')
    p0V, p1V, pSpam = train_NB0(array(trainMat),array(trainClasses))

    print('p0V p1V pSpam success')
    # 对测试集进行分类
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        result = classify_NB(array(wordVector), p0V, p1V, pSpam)
        if  result != classList[docIndex]:
            errorCount += 1
        print "classification: ", result, classList[docIndex]
    print ('the error rate is: ', float(errorCount)/len(testSet), errorCount, len(testSet))
    #return vocabList,fullText

spam_test()

# classification:  0 1
# classification:  0 0
# classification:  0 0
# classification:  0 1
# classification:  0 0
# classification:  0 0
# classification:  0 1
# classification:  0 1
# classification:  0 1
# classification:  0 0
# ('the error rate is: ', 0.5, 5, 10)

你可能感兴趣的:(05 ML 朴素贝叶斯入门)