python第六课 高级特性

1.切片

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

>>> r = []
>>> n = 3
>>> for i in range(n):
...     r.append(L[i])
... 
>>> r
['Michael', 'Sarah', 'Tracy']

这样太麻烦了

>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

如果第一个索引是0,还可以省略:

>>> L[:3]
['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]
['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

例子
切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

2.迭代

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)
...
a
c
b

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC'
:...  print(ch)
...ABC

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

3.列表生成式

表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式
要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
...  L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents',
 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 
'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

联系
如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()
方法,所以列表生成式会报错:

>>> L = ['Hello', 'World', 18, 'Apple', None]
>>> [s.lower() for s in L]Traceback (most recent call last): File "
", line 1, in  File "", line 1, in 
AttributeError: 'int' object has no attribute 'lower'

使用内建的isinstance函数可以判断一个变量是不是字符串:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [s.lower() for s in L1 if isinstance(s, str)]
print(L2)

4.生成式

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
 at 0x1022ef630>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "", line 1, in 
StopIteration

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25
36
49
64
81

菲波那切数列
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

例子--杨辉三角

def triangles():
    L = [1]
    while True:
        yield L
        L.append(0);
        L = [L[i-1] + L[i] for i in range(len(L))]

5.迭代器

Iterable对象是可以知道长度的
Iterator对象不知道长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能感兴趣的:(python第六课 高级特性)