Spark源码系列(七)Spark on yarn具体实现

本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思。这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一个月的时间,更新太快了,节奏跟不上啊,这里仍旧是讲1.0.0的代码,所以各位朋友也不要再问我讲的是哪个版本,目前为止发布的文章都是基于1.0.0的代码。

在第一章《spark-submit提交作业过程》的时候,我们讲过Spark on yarn的在cluster模式下它的main class是org.apache.spark.deploy.yarn.Client。okay,这个就是我们的头号目标。

提交作业

找到main函数,里面调用了run方法,我们直接看run方法。

    val appId = runApp()

    monitorApplication(appId)

    System.exit(0)

运行App,跟踪App,最后退出。我们先看runApp吧。

Spark源码系列(七)Spark on yarn具体实现
  def runApp(): ApplicationId = {

    // 校验参数,内存不能小于384Mb,Executor的数量不能少于1个。

    validateArgs()

    // 这两个是父类的方法,初始化并且启动Client

    init(yarnConf)

    start()



    // 记录集群的信息(e.g, NodeManagers的数量,队列的信息).

    logClusterResourceDetails()



    // 准备提交请求到ResourcManager (specifically its ApplicationsManager (ASM)// Get a new client application.

    val newApp = super.createApplication()

    val newAppResponse = newApp.getNewApplicationResponse()

    val appId = newAppResponse.getApplicationId()

    // 检查集群的内存是否满足当前的作业需求

    verifyClusterResources(newAppResponse)



    // 准备资源和环境变量.

    //1.获得工作目录的具体地址: /.sparkStaging/appId/

    val appStagingDir = getAppStagingDir(appId)

  //2.创建工作目录,设置工作目录权限,上传运行时所需要的jar包

    val localResources = prepareLocalResources(appStagingDir)

    //3.设置运行时需要的环境变量

    val launchEnv = setupLaunchEnv(localResources, appStagingDir)

  //4.设置运行时JVM参数,设置SPARK_USE_CONC_INCR_GC为true的话,就使用CMS的垃圾回收机制

    val amContainer = createContainerLaunchContext(newAppResponse, localResources, launchEnv)



    // 设置application submission context. 

    val appContext = newApp.getApplicationSubmissionContext()

    appContext.setApplicationName(args.appName)

    appContext.setQueue(args.amQueue)

    appContext.setAMContainerSpec(amContainer)

    appContext.setApplicationType("SPARK")



    // 设置ApplicationMaster的内存,Resource是表示资源的类,目前有CPU和内存两种.

    val memoryResource = Records.newRecord(classOf[Resource]).asInstanceOf[Resource]

    memoryResource.setMemory(args.amMemory + YarnAllocationHandler.MEMORY_OVERHEAD)

    appContext.setResource(memoryResource)



    // 提交Application.

    submitApp(appContext)

    appId

  }
View Code

monitorApplication就不说了,不停的调用getApplicationReport方法获得最新的Report,然后调用getYarnApplicationState获取当前状态,如果状态为FINISHED、FAILED、KILLED就退出。

说到这里,顺便把跟yarn相关的参数也贴出来一下,大家一看就清楚了。

Spark源码系列(七)Spark on yarn具体实现
    while (!args.isEmpty) {

      args match {

        case ("--jar") :: value :: tail =>

          userJar = value

          args = tail



        case ("--class") :: value :: tail =>

          userClass = value

          args = tail



        case ("--args" | "--arg") :: value :: tail =>

          if (args(0) == "--args") {

            println("--args is deprecated. Use --arg instead.")

          }

          userArgsBuffer += value

          args = tail



        case ("--master-class" | "--am-class") :: value :: tail =>

          if (args(0) == "--master-class") {

            println("--master-class is deprecated. Use --am-class instead.")

          }

          amClass = value

          args = tail



        case ("--master-memory" | "--driver-memory") :: MemoryParam(value) :: tail =>

          if (args(0) == "--master-memory") {

            println("--master-memory is deprecated. Use --driver-memory instead.")

          }

          amMemory = value

          args = tail



        case ("--num-workers" | "--num-executors") :: IntParam(value) :: tail =>

          if (args(0) == "--num-workers") {

            println("--num-workers is deprecated. Use --num-executors instead.")

          }

          numExecutors = value

          args = tail



        case ("--worker-memory" | "--executor-memory") :: MemoryParam(value) :: tail =>

          if (args(0) == "--worker-memory") {

            println("--worker-memory is deprecated. Use --executor-memory instead.")

          }

          executorMemory = value

          args = tail



        case ("--worker-cores" | "--executor-cores") :: IntParam(value) :: tail =>

          if (args(0) == "--worker-cores") {

            println("--worker-cores is deprecated. Use --executor-cores instead.")

          }

          executorCores = value

          args = tail



        case ("--queue") :: value :: tail =>

          amQueue = value

          args = tail



        case ("--name") :: value :: tail =>

          appName = value

          args = tail



        case ("--addJars") :: value :: tail =>

          addJars = value

          args = tail



        case ("--files") :: value :: tail =>

          files = value

          args = tail



        case ("--archives") :: value :: tail =>

          archives = value

          args = tail



        case Nil =>

          if (userClass == null) {

            printUsageAndExit(1)

          }



        case _ =>

          printUsageAndExit(1, args)

      }

    }
View Code

ApplicationMaster

直接看run方法就可以了,main函数就干了那么一件事...

Spark源码系列(七)Spark on yarn具体实现
  def run() {

    // 设置本地目录,默认是先使用yarn的YARN_LOCAL_DIRS目录,再到LOCAL_DIRS

    System.setProperty("spark.local.dir", getLocalDirs())



    // set the web ui port to be ephemeral for yarn so we don't conflict with

    // other spark processes running on the same box

    System.setProperty("spark.ui.port", "0")



    // when running the AM, the Spark master is always "yarn-cluster"

    System.setProperty("spark.master", "yarn-cluster")



   // 设置优先级为30,和mapreduce的优先级一样。它比HDFS的优先级高,因为它的操作是清理该作业在hdfs上面的Staging目录

    ShutdownHookManager.get().addShutdownHook(new AppMasterShutdownHook(this), 30)



    appAttemptId = getApplicationAttemptId()

  // 通过yarn.resourcemanager.am.max-attempts来设置,默认是2

  // 目前发现它只在清理Staging目录的时候用

    isLastAMRetry = appAttemptId.getAttemptId() >= maxAppAttempts

    amClient = AMRMClient.createAMRMClient()

    amClient.init(yarnConf)

    amClient.start()



    // setup AmIpFilter for the SparkUI - do this before we start the UI

  //  方法的介绍说是yarn用来保护ui界面的,我感觉是设置ip代理的

    addAmIpFilter()

  //  注册ApplicationMaster到内部的列表里

    ApplicationMaster.register(this)



    // 安全认证相关的东西,默认是不开启的,省得给自己找事

    val securityMgr = new SecurityManager(sparkConf)



    // 启动driver程序 

    userThread = startUserClass()



    // 等待SparkContext被实例化,主要是等待spark.driver.port property被使用

  // 等待结束之后,实例化一个YarnAllocationHandler

    waitForSparkContextInitialized()



    // Do this after Spark master is up and SparkContext is created so that we can register UI Url.

  // 向yarn注册当前的ApplicationMaster, 这个时候isFinished不能为true,是true就说明程序失败了

    synchronized {

      if (!isFinished) {

        registerApplicationMaster()

        registered = true

      }

    }



    // 申请Container来启动Executor

    allocateExecutors()



    // 等待程序运行结束

    userThread.join()



    System.exit(0)

  }
View Code

run方法里面主要干了5项工作:

1、初始化工作

2、启动driver程序

3、注册ApplicationMaster

4、分配Executors

5、等待程序运行结束

我们重点看分配Executor方法。 

Spark源码系列(七)Spark on yarn具体实现
  private def allocateExecutors() {

    try {

      logInfo("Allocating " + args.numExecutors + " executors.")

      // 分host、rack、任意机器三种类型向ResourceManager提交ContainerRequest

    // 请求的Container数量可能大于需要的数量

      yarnAllocator.addResourceRequests(args.numExecutors)

      // Exits the loop if the user thread exits.

      while (yarnAllocator.getNumExecutorsRunning < args.numExecutors && userThread.isAlive) {

        if (yarnAllocator.getNumExecutorsFailed >= maxNumExecutorFailures) {

          finishApplicationMaster(FinalApplicationStatus.FAILED, "max number of executor failures reached")

        }

     // 把请求回来的资源进行分配,并释放掉多余的资源

        yarnAllocator.allocateResources()

        ApplicationMaster.incrementAllocatorLoop(1)

        Thread.sleep(100)

      }

    } finally {

      // In case of exceptions, etc - ensure that count is at least ALLOCATOR_LOOP_WAIT_COUNT,

      // so that the loop in ApplicationMaster#sparkContextInitialized() breaks.

      ApplicationMaster.incrementAllocatorLoop(ApplicationMaster.ALLOCATOR_LOOP_WAIT_COUNT)

    }

    logInfo("All executors have launched.")



    // 启动一个线程来状态报告

    if (userThread.isAlive) {

      // Ensure that progress is sent before YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS elapses.

      val timeoutInterval = yarnConf.getInt(YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS, 120000)



      // we want to be reasonably responsive without causing too many requests to RM.

      val schedulerInterval = sparkConf.getLong("spark.yarn.scheduler.heartbeat.interval-ms", 5000)



      // must be <= timeoutInterval / 2.

      val interval = math.min(timeoutInterval / 2, schedulerInterval)



      launchReporterThread(interval)

    }

  }
View Code

这里面我们只需要看addResourceRequests和allocateResources方法即可。

先说addResourceRequests方法,代码就不贴了。

Client向ResourceManager提交Container的请求,分三种类型:优先选择机器、同一个rack的机器、任意机器。

优先选择机器是在RDD里面的getPreferredLocations获得的机器位置,如果没有优先选择机器,也就没有同一个rack之说了,可以是任意机器。

下面我们接着看allocateResources方法。

Spark源码系列(七)Spark on yarn具体实现
  def allocateResources() {

    // We have already set the container request. Poll the ResourceManager for a response.

    // This doubles as a heartbeat if there are no pending container requests.

  // 之前已经提交过Container请求了,现在只需要获取response即可 

    val progressIndicator = 0.1f

    val allocateResponse = amClient.allocate(progressIndicator)



    val allocatedContainers = allocateResponse.getAllocatedContainers()

    if (allocatedContainers.size > 0) {

      var numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * allocatedContainers.size)



      if (numPendingAllocateNow < 0) {

        numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * numPendingAllocateNow)

      }



      val hostToContainers = new HashMap[String, ArrayBuffer[Container]]()



      for (container <- allocatedContainers) {

     // 内存 > Executor所需内存 + 384

        if (isResourceConstraintSatisfied(container)) {

          // 把container收入名册当中,等待发落

          val host = container.getNodeId.getHost

          val containersForHost = hostToContainers.getOrElseUpdate(host, new ArrayBuffer[Container]())

          containersForHost += container

        } else {

          // 内存不够,释放掉它

          releaseContainer(container)

        }

      }



      // 找到合适的container来使用.

      val dataLocalContainers = new HashMap[String, ArrayBuffer[Container]]()

      val rackLocalContainers = new HashMap[String, ArrayBuffer[Container]]()

      val offRackContainers = new HashMap[String, ArrayBuffer[Container]]()

    // 遍历所有的host

      for (candidateHost <- hostToContainers.keySet) {

        val maxExpectedHostCount = preferredHostToCount.getOrElse(candidateHost, 0)

        val requiredHostCount = maxExpectedHostCount - allocatedContainersOnHost(candidateHost)



        val remainingContainersOpt = hostToContainers.get(candidateHost)

        var remainingContainers = remainingContainersOpt.get

      

        if (requiredHostCount >= remainingContainers.size) {

          // 需要的比现有的多,把符合数据本地性的添加到dataLocalContainers映射关系里

          dataLocalContainers.put(candidateHost, remainingContainers)

          // 没有containner剩下的.

          remainingContainers = null

        } else if (requiredHostCount > 0) {

          // 获得的container比所需要的多,把多余的释放掉

          val (dataLocal, remaining) = remainingContainers.splitAt(remainingContainers.size - requiredHostCount)

          dataLocalContainers.put(candidateHost, dataLocal)



          for (container <- remaining) releaseContainer(container)

          remainingContainers = null

        }



        // 数据所在机器已经分配满任务了,只能在同一个rack里面挑选了

        if (remainingContainers != null) {

          val rack = YarnAllocationHandler.lookupRack(conf, candidateHost)

          if (rack != null) {

            val maxExpectedRackCount = preferredRackToCount.getOrElse(rack, 0)

            val requiredRackCount = maxExpectedRackCount - allocatedContainersOnRack(rack) -

              rackLocalContainers.getOrElse(rack, List()).size



            if (requiredRackCount >= remainingContainers.size) {

              // Add all remaining containers to to `dataLocalContainers`.

              dataLocalContainers.put(rack, remainingContainers)

              remainingContainers = null

            } else if (requiredRackCount > 0) {

              // Container list has more containers that we need for data locality.

              val (rackLocal, remaining) = remainingContainers.splitAt(remainingContainers.size - requiredRackCount)

              val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, new ArrayBuffer[Container]())



              existingRackLocal ++= rackLocal

              remainingContainers = remaining

            }

          }

        }



        if (remainingContainers != null) {

          // 还是不够,只能放到别的rack的机器上运行了

          offRackContainers.put(candidateHost, remainingContainers)

        }

      }



      // 按照数据所在机器、同一个rack、任意机器来排序

      val allocatedContainersToProcess = new ArrayBuffer[Container](allocatedContainers.size)

      allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(dataLocalContainers)

      allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(rackLocalContainers)

      allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(offRackContainers)



      // 遍历选择了的Container,为每个Container启动一个ExecutorRunnable线程专门负责给它发送命令

      for (container <- allocatedContainersToProcess) {

        val numExecutorsRunningNow = numExecutorsRunning.incrementAndGet()

        val executorHostname = container.getNodeId.getHost

        val containerId = container.getId

     // 内存需要大于Executor的内存 + 384

        val executorMemoryOverhead = (executorMemory + YarnAllocationHandler.MEMORY_OVERHEAD)



        if (numExecutorsRunningNow > maxExecutors) {

          // 正在运行的比需要的多了,释放掉多余的Container

          releaseContainer(container)

          numExecutorsRunning.decrementAndGet()

        } else {

          val executorId = executorIdCounter.incrementAndGet().toString

          val driverUrl = "akka.tcp://spark@%s:%s/user/%s".format(

            sparkConf.get("spark.driver.host"),

            sparkConf.get("spark.driver.port"),

            CoarseGrainedSchedulerBackend.ACTOR_NAME)





          // To be safe, remove the container from `pendingReleaseContainers`.

          pendingReleaseContainers.remove(containerId)

         // 把container记录到已分配的rack的映射关系当中

          val rack = YarnAllocationHandler.lookupRack(conf, executorHostname)

          allocatedHostToContainersMap.synchronized {

            val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname,

              new HashSet[ContainerId]())



            containerSet += containerId

            allocatedContainerToHostMap.put(containerId, executorHostname)



            if (rack != null) {

              allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1)

            }

          }

      // 启动一个线程给它进行跟踪服务,给它发送运行Executor的命令

          val executorRunnable = new ExecutorRunnable(

            container,

            conf,

            sparkConf,

            driverUrl,

            executorId,

            executorHostname,

            executorMemory,

            executorCores)

          new Thread(executorRunnable).start()

        }

      }

      

  }
View Code

1、把从ResourceManager中获得的Container进行选择,选择顺序是按照前面的介绍的三种类别依次进行,优先选择机器 > 同一个rack的机器 > 任意机器。

2、选择了Container之后,给每一个Container都启动一个ExecutorRunner一对一贴身服务,给它发送运行CoarseGrainedExecutorBackend的命令。

3、ExecutorRunner通过NMClient来向NodeManager发送请求。

 

总结:

把作业发布到yarn上面去执行这块涉及到的类不多,主要是涉及到Client、ApplicationMaster、YarnAllocationHandler、ExecutorRunner这四个类。

1、Client作为Yarn的客户端,负责向Yarn发送启动ApplicationMaster的命令。

2、ApplicationMaster就像项目经理一样负责整个项目所需要的工作,包括请求资源,分配资源,启动Driver和Executor,Executor启动失败的错误处理。

3、ApplicationMaster的请求、分配资源是通过YarnAllocationHandler来进行的。

4、Container选择的顺序是:优先选择机器 > 同一个rack的机器 > 任意机器。

5、ExecutorRunner只负责向Container发送启动CoarseGrainedExecutorBackend的命令。

6、Executor的错误处理是在ApplicationMaster的launchReporterThread方法里面,它启动的线程除了报告运行状态,还会监控Executor的运行,一旦发现有丢失的Executor就重新请求。

7、在yarn目录下看到的名称里面带有YarnClient的是属于yarn-client模式的类,实现和前面的也差不多。

其它的内容更多是Yarn的客户端api使用,我也不太会,只是看到了能懂个意思,哈哈。

 

 

岑玉海

转载请注明出处,谢谢!

 

 

你可能感兴趣的:(spark)