- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- 相似度计算
Panesle
python人工智能算法
1.余弦相似度计算(不区分向量方向,互换顺序也相同)sen_vec1=sbert.get_sentence_emb(context15)#向量化sen_vec1=sen_vec1*(1.0/(np.linalg.norm(sen_vec1)+0.00001))#normal化sen_vec2=sbert.get_sentence_emb(context14)#向量化sen_vec2=sen_vec
- DeepSeek vs text2vec:谁更适合Python题库向量提取对比
黑金IT
向量数据库pythonpython开发语言
在Python培训题库提取标题和答案用于学习的应用场景中,选择text2vec-large-chinese和DeepSeek的优劣取决于具体需求和资源限制。以下是对两种模型在该场景下的适用性分析:1.应用场景分析在Python培训题库中,常见的任务可能包括:题目相似度计算:判断题目是否重复或相似。自动分类:将题目按照难度、知识点等分类。智能推荐:根据用户的学习进度推荐相关题目。文本特征提取:用于后
- 【RAG系列】文字的数字化分身 - 向量嵌入的魔法世界
什么都想学的阿超
原理概念#深度学习深度学习人工智能RAG
文字的数字化分身-向量嵌入的魔法世界文字向量编码器数字分身语义空间相似度计算代数运算关系推理一、认知革命:文字的数字基因工程1.1文字GPS坐标系想象每个词语都是银河系中的星球,向量坐标就是它们的星际坐标:经度:语义维度(动物/植物/人造物)纬度:情感维度(积极/中性/消极)高度:抽象维度(具体/抽象)#词语向量可视化示例words=["国王","王后","男人","女人","电脑"]embedd
- 如何利用USearch实现快速向量搜索:更轻量、更高效的替代方案
sdfugyd
python
引言向量搜索在现代机器学习和信息检索中扮演着重要角色。无论是图像检索、文本相似度计算还是推荐系统,向量搜索都是核心技术之一。本文将介绍一个轻量级、高效的向量搜索引擎——USearch。这种引擎与FAISS在功能上相似,但在设计上更为精简,具备更高的兼容性。接下来,我们将详细讲解如何安装和使用USearch,并提供实用的代码示例。主要内容1.USearch与FAISS的对比USearch的基础功能与
- 使用 AnyscaleEmbeddings 进行文本嵌入
dgay_hua
python
在自然语言处理(NLP)领域中,嵌入(Embedding)是一种将文本转换为向量表示的方法。今天,我们将通过AnyscaleEmbeddings类来演示如何进行文本嵌入,它能有效地将文本转换为高维向量,这在文本相似度计算、文本分类等任务中非常有用。1.技术背景介绍嵌入模型是NLP中的一种常见技术,它能够将语言数据映射为固定长度的高维向量。通过预训练模型(如BERT、GPT等),我们可以获得语义丰富
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- 大数据笔记(二):HDFS原理知识
Lansonli
大数据进阶知识大数据HDFS
目录HDFS原理知识一、前言二、思考三、理论知识点四、存储模型五、架构设计六、角色功能NameNodeDataNode七、元数据持久化八、安全模式九、HDFS中的SNN十、Block的副本放置策略十一、HDFS写流程十二、HDFS读流程HDFS原理知识一、前言博主语录:一文精讲一个知识点,多了你记不住,一句废话都没有经典语录:张牙舞爪的人,往往是脆弱的。因为真正强大的人,是自信的,自信就会温和,温
- 破解数据模型相似度计算难题:为数据应用清障
秉寒
大数据
引言在数字化浪潮下,数据仓库和数据湖已成为企业数据管理的核心基础设施。然而,随着它们在公司运营中服役时间的增长,一个棘手的问题逐渐浮现:相似的数据模型如雨后春笋般涌现,字段属性重复度常常高达80%以上。这不仅造成了数据冗余,还让用户在海量的数据模型中迷失方向,使用体验大打折扣。本文将提出一种计算数据模型相似度的方案,助力企业解决这一难题。问题剖析数据模型的相似性问题,本质上源于企业数据架构缺乏统一
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 图像检索简介
handsomestWei
AI图像处理人工智能
图像检索主要分为两类,一类是基于文本的图像检索(TextBasedImageRetrieval),另一类是基于内容的图像检索(ContentBasedImageRetrieval)基于文本通过对图像进行文本描述(对内容分析进行自动标注和人工标注),提炼关键词等标签信息。后续在进行检索时,可以通过检索关键词的方式查找对应的图片。基于内容以图搜图。涉及图像特征提取、相似度计算、特征数据库存储和搜索。图
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 探秘Elasticsearch:高性能搜索引擎的原理与应用场景(一)
凛鼕将至
搜索引擎elasticsearch大数据
本系列文章简介:本系列文章将探秘Elasticsearch的原理与应用场景,从基本原理到具体应用,带领读者全面了解这一强大的搜索引擎。首先我们将介绍Elasticsearch的基本原理,包括分布式架构、倒排索引和分片等核心概念。然后我们将深入探讨Elasticsearch的搜索原理,包括查询解析、相似度计算和布尔搜索等关键技术。接着我们将讨论Elasticsearch的索引和映射,了解如何对文档进
- 人工智能学习与实训笔记(六):神经网络之智能推荐系统
穿越光年
人工智能技术学习人工智能学习笔记
人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客本篇目录七、智能推荐系统处理7.1常用的推荐系统算法7.2如何实现推荐7.3基于飞桨实现的电影推荐模型7.3.1电影数据类型7.3.2数据处理7.3.4数据读取器7.3.4网络构建7.3.4.1用户特征提取7.3.4.2电影特征提取7.3.4.3相似度计算7.3.4.4网络模型完整代码7.3根据推荐案例的思考七、智能推荐系统处理7.1常用
- hadoot离线与实时的电影推荐系统-计算机毕业设计源码10338
FYKJ_2010
mysqlajaxcssbootstrapvue.js
摘要随着互联网与移动互联网迅速普及,网络上的电影娱乐信息数量相当庞大,人们对获取感兴趣的电影娱乐信息的需求越来越大,个性化的离线与实时的电影推荐系统成为一个热门。然而电影信息的表示相当复杂,己有的相似度计算方法与推荐算法都各有优势,导致单一的相似度计算方法与推荐算法无法合适地应用于离线与实时的电影推荐系统中。大量的电影数据的管理运营随着数据量的增长也变得越来越复杂,因此,如何综合各种算法的优势给用
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- HNSW的基本原理及使用
查叔笔录
本文首发于:http://xzyin.top/hnsw/转载请注明出处:http://xzyin.top/相关系列文章可参考:《大规模向量相似度计算(一)——hnswlib的基本使用示例》《大规模向量相似度计算(二)——hnswlib的参数含义》关注微信公众号:【charlie_mouse】进入技术交流群。1.Smallworldvs.Randomgraph在正式的介绍NSW和HNSW之前,先来了
- LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索
Hugo Lei
LLM工程语言模型postgresql人工智能LLM向量数据库embedding
目录HightLightMac上安装PostgreSQLDBever图形界面管理端创建DB使用向量检索vector相似度计算近似近邻索引HNSW近似近邻索引示例HightLight使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。可以和在线业务共用一套DB,减少其他组件的引入,降低复杂度,在业务初期可以极大的提升效率。Mac上安装PostgreSQL强烈建议使用
- Python与自然语言处理库Gensim实战
心梓知识
python自然语言处理easyui
一、Gensim简介Gensim是一款Python自然语言处理库。它能够自动化训练出一个文本语料库,然后用该语料库来训练出一个词向量模型。在语料库中,每个语料库都是由一个个文档组成,每个文档则是由若干个单词组成。Gensim相对于其他Python自然语言处理库的优点在于它的速度和内存占用率较低。同时它还提供了许多文本处理的功能,比如文档相似度计算和主题建模等。二、安装Gensim在安装Gensim
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 脉冲神经网络(SNN)概述
喜欢打酱油的老鸟
人工智能脉冲神经网络(SNN)概述
https://www.toutiao.com/a6701844289518830091/主要讨论脉冲神经网络的拓扑结构、信息的脉冲序列编码方法、脉冲神经网络的学习算法和进化方法等。一、脉冲神经网络的拓扑结构同传统的人工神经网络一样,脉冲神经网络同样分为三种拓扑结构。它们分别是前馈型脉冲神经网络(feed-forwardspikingneuralnetwork)、递归型脉冲神经网络(recurre
- 如何利用大模型结合文本语义实现文本相似度分析?
小小晓晓阳
LLM文心一言pythonnlp
常规的文本相似度计算有TF-IDF,Simhash、编辑距离等方式,但是常规的文本相似度计算方式仅仅能对文本表面相似度进行分析计算,并不能结合语义分析,而如果使用机器学习、深度学习的方式费时费力,效果也不一定能达到我们满意的状态,随着大模型技术的日渐成熟,我们是否可以利用大模型来完成文本相似度分析呢?本文将结合文心一言4.0来介绍两种文本相似度分析的方法:方式一提供prompt,直接调用大模型接口
- 相似度计算
hzhj
评价指标机器学习人工智能
衡量相同维度的不同向量之间的距离称之为两向量的相似度,其计算方法具体可查看这里参考文献:机器学习中的数学——距离定义:基础知识_知识距离定义-CSDN博客
- Python 库 Difflib
人帝
python开发语言
Python的difflib库豪气现身,它拥有强大的文字比较功能,能帮你快速地找出不同点,使整合过程变得轻松愉快。什么是difflibdifflib是Python标准库的一部分,无需额外安装即可使用。这个库由多个部分组成,主要提供了用于比较序列之间的差异和相似度计算的类和函数。它可以用来比较文件、字符串等,并可以生成差异结果的多种报告,这样我们便可以直观地看到不同之处。由于difflib是随Pyt
- 我用Java写了一个协调过滤算法案例
还得是你大哥
java服务端java算法开发语言
协调过滤算法(CollaborativeFiltering)是一种基于用户行为数据的推荐算法。这里给出一个简单的Java实现案例,使用余弦相似度计算物品之间的相似度,并根据相似度为用户推荐物品。importjava.util.*;publicclassCollaborativeFiltering{publicstaticvoidmain(String[]args){//用户评分数据Map>user
- 基于BERT模型实现文本相似度计算
伪_装
自然语言处理深度学习bert深度学习自然语言
配置所需的包!pipinstalltransformers==2.10.0-ihttps://pypi.tuna.tsinghua.edu.cn/simple!pipinstallHanziConv-ihttps://pypi.tuna.tsinghua.edu.cn/simple数据预处理#-*-coding:utf-8-*-fromtorch.utils.dataimportDatasetfr
- LLM - Transformer 的 Q/K/V 详解
BIT_666
Python深度学习transformer深度学习人工智能
目录一.引言二.传统Q/K/V三.TransformerQ/K/V-InputQuery-Q/K/V获取-Q/K相似度计算-注意力向量-MultiHead四.代码测试-初始化-Attention-Main五.总结一.引言Transformer的输入是我们的一个query句子,例如"我爱中国",但是Transformer处理时却1生3得到了Q/K/V,下面我们从传统机器学习和Transformer两
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr