- PostgreSQL 中的 pg_trgm 扩展详解
Yashar Qian
数据库(SQL)随笔postgresql数据库
PostgreSQL中的pg_trgm扩展详解pg_trgm是PostgreSQL提供的一个核心扩展,用于实现基于三元组(trigram)的文本相似度计算和高效搜索。它特别适合优化模糊匹配、部分匹配和相似度查询。核心功能三元组(trigram)概念:将字符串拆解为连续的3个字符组例如:“hello”→["h","he",“hel”,“ell”,“llo”,"lo"]主要用途:优化LIKE'%pat
- Ollama平台里最流行的embedding模型: nomic-embed-text 模型介绍和实践
skywalk8163
人工智能embedding人工智能服务器
nomic-embed-text模型介绍nomic-embed-text是一个基于SentenceTransformers库的句子嵌入模型,专门用于特征提取和句子相似度计算。该模型在多个任务上表现出色,特别是在分类、检索和聚类任务中。其核心优势在于能够生成高质量的句子嵌入,这些嵌入在语义上非常接近,从而在相似度计算和分类任务中表现优异。之所以选用这个模型,是因为在Ollama网站查找这个模型,发现
- 【SNN脉冲神经网络2】AdEx神经网络软件仿真
XvnNing
SNN脉冲神经网络神经网络人工智能深度学习
本文使用AdEx神经元搭建一个完整的神经网络来进行生物神经脉冲现象的仿真。主要的目的是为了验证数学原理,因此只调用的numpy函数包。对应的代码例程如下:1.导入所需的Python函数库importnumpyasnpimportmatplotlib.pyplotaspltimportreimportos2.定义均值函数以及一些常用函数defbin_data(data):try:returnnp.m
- AI人工智能领域深度学习的跨模态检索技术
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习ai
AI人工智能领域深度学习的跨模态检索技术关键词:跨模态检索、深度学习、多模态学习、特征提取、相似度计算、注意力机制、Transformer摘要:本文深入探讨了AI领域中基于深度学习的跨模态检索技术。我们将从基础概念出发,详细分析跨模态检索的核心算法原理、数学模型和实际应用。文章包含完整的Python实现示例,展示如何构建一个跨模态检索系统,并讨论当前的技术挑战和未来发展方向。通过本文,读者将全面理
- 【Python】Synonyms
宅男很神经
python开发语言
当然,我完全理解您的需求,并且将竭尽全力为您提供一个前所未有的、极其深入和全面的关于“Python库Synonyms,用于中文词性分析和相似度计算”的专属学习指南。我将从最底层、最核心的原理开始,逐步向上构建知识体系,确保每一个细节都被剖析得淋漓尽致,不放过任何一个学习角度。所有内容都将是原创生成,绝无抄袭,并辅以大量我独立设计的实战代码示例,每行代码都将附带详尽的中文解释。由于您要求极高的字数(
- CARLsim开源程序 是一个高效、易用、GPU 加速的软件框架,用于模拟具有高度生物细节的大规模脉冲神经网络 (SNN) 模型。
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载CARLsim是一个高效、易用的GPU加速库,用于模拟具有高度生物学细节的大规模脉冲神经网络(SNN)模型。CARLsim允许在通用x86CPU和标准现成GPU上以逼真的突触动力学执行Izhikevich脉冲神经元网络。该模拟器在C/C++中提供了一个类似PyNN的编程接口,允许在突触、神经元和网络级别指定详细信息和参数。二、CARLsim6的新功能包括:CUDA
- **脉冲神经网络:探索发散创新的潜力**一、引言随着人工智能技术的飞速发展,神经网络已成为解决复杂问题的强大工具。其中,脉冲神经网络(Spiking Neural Network,SNN)作为一种模拟
weixin_43880734
人工智能神经网络深度学习python
脉冲神经网络:探索发散创新的潜力一、引言随着人工智能技术的飞速发展,神经网络已成为解决复杂问题的强大工具。其中,脉冲神经网络(SpikingNeuralNetwork,SNN)作为一种模拟生物神经网络的工作机制,因其高效、节能的特性而受到广泛关注。本文将深入探讨脉冲神经网络的基本原理、创新应用以及发展前景。二、脉冲神经网络概述脉冲神经网络是一种模拟生物神经网络中神经元之间通信方式的网络。与传统的人
- 图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)
ghx3110
数据/脚本处理均值算法哈希算法直方图图片去重
一、整体步骤本脚本中,关键步骤包括以下步骤:1、图片加载:脚本会遍历指定的图片目录,将所有图片加载到内存中。2、图像预处理:比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除颜色、尺寸等因素的影响。3、相似度计算:图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数(SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。
- 【Python】Python+PIL计算两个图像的相似度
宅男很神经
python开发语言
第一章:图像相似度计算概述1.1什么是图像相似度?图像相似度,顾名思义,是指衡量两幅或多幅图像在视觉内容或语义信息上相似程度的指标。它是一个介于0(完全不相似)和1(完全相同或高度相似)之间的数值,或者是一个可以反映相似程度的距离度量(距离越小越相似)。在计算机视觉领域,图像相似度计算是诸多高级应用的基础。1.1.1定义与重要性定义:图像相似度的定义可以从多个层面进行。像素层面:直接比较两幅图像对
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 【RAG排序】rag排序代码示例-高级版
weixin_37763484
大模型人工智能搜索引擎
以下是利用claude生成的排序示例,相对来说高级一些,例如使用了图排序、混合排序、mmr等技术。代码是示例代码,受输出长度限制,无法给出完整例子,在最后对输入的query、document_embedding等进行了实例展示。可以参考“使用案例解释”尝试进行修改和运行。RAG系统排序阶段的多种方法与实现1.基础排序方法1.1余弦相似度排序最基本的相似度计算方法,适用于向量检索后的重排序。impo
- 【推荐算法】推荐系统核心算法深度解析:协同过滤 Collaborative Filtering
白熊188
推荐算法算法机器学习人工智能推荐算法推荐
推荐系统核心算法深度解析:协同过滤一、协同过滤的算法逻辑协同过滤的两种实现方式二、算法原理与数学推导1.相似度计算关键公式2.矩阵分解(MF)进阶三、模型评估1.准确性指标2.排序指标(Top-N推荐)3.多样性&新颖性四、应用案例五、面试常见问题六、详细优缺点优点缺点七、优化方向总结一、协同过滤的算法逻辑协同过滤的核心思想是利用群体智慧:假设:相似用户对物品有相似偏好,相似物品会被相似用户喜欢。
- 机器学习——聚类算法
Xyz_Overlord
机器学习算法聚类
一、聚类的概念根据样本之间的相似性,将样本划分到不同的类别中的一种无监督学习算法。细节:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。计算样本和样本之间的相似性,一般使用欧式距离。二、聚类算法分类根据聚类颗粒度分类:细粒度和粗粒度。根据实现方法分
- 基于本体的自动问答系统
奇文王语
自然语言处理语言自动信息检索
自然语言处理的一个分支–自动问答系统本体(Ontology)的应用:(1)信息检索(2)自动问答分词停用此词处理相似度计算词语相似度计算句子相似度计算改进(1)分词算法(2)词语相似度计算的算法(3)句子相似度计算的算法提高:查全率查准率存在问题:无法充分反映用户查询目的无法反映用户想要的内容无法对用户检索需求进行语义方面的理解:关键词匹配语义方面(欠缺)自动问答系统的工作原理:使用自然语言理解的
- CCF-CSP认证 2024年3月 2.相似度计算
Zachary_coding
哈希算法算法
这里用一下set_intersaction()函数来计算交集set_intersection()作用是求两个集合的交集:其中有5个参数:firts1,last1,first2,last2,result。他们都是迭代器。需要注意的是,所求的两个集合必须是有序的,不然运行时会出现错误。例子set_intersection(nums1.begin(),nums1.end(),nums2.begin(),
- CCF-CSP认证考试 202403-2 相似度计算 100分题解
Pujx
c++
更多CSP认证考试题目题解可以前往:CSP-CCF认证考试真题题解原题链接:202403-2相似度计算时间限制:1.0秒空间限制:512MiB题目背景两个集合的Jaccard相似度定义为:Sim(A,B)=∣A∩B∣∣A∪B∣Sim(A,B)=\frac{|A\capB|}{|A\cupB|}Sim(A,B)=∣A∪B∣∣A∩B∣即交集的大小除以并集的大小。当集合AAA和BBB完全相同时,Sim(
- 202403-02-相似度计算 csp认证
0zxm
算法开发语言c++数据结构
其实这个问题就是求两篇文章的词汇的交集和并集,首先一说到并集,我就想到了set集合数据结构,set中的元素必须唯一。STL之set的基本使用–博客参考所以将两个文章的词汇全部加入set中,并求出set的大小,即为并集的大小。#include#include#includeusingnamespacestd;voidtoupper(string&str){for(inti=0;i='a'&&str[
- 万字详解:向量数据库:原理、索引技术与选型指南
AI天才研究院
计算AI大模型企业级应用开发实战数据库
万字详解:向量数据库:原理、索引技术与选型指南关键词:向量数据库、向量检索、相似性搜索、ANN算法、HNSW、量化技术、嵌入模型、多模态搜索、RAG架构摘要:本文深入剖析向量数据库的核心原理、索引技术和实际应用场景。从向量表示学习的基础概念出发,详细介绍了向量相似度计算方法、主流索引算法(如HNSW、IVF、LSH等)的工作机制,以及向量量化技术。文章对比分析了当前主流向量数据库产品的技术特点与性
- 生物计算芯片编译困境:SNN脉冲时序编码的优化迷宫与破局之道
尘烬海
serverless开发语言缓存
一、脉冲时序编码的数学本质在SNN的数学框架中,脉冲时序编码的数学表征可分解为三个核心维度:1.时间编码微分几何结构脉冲时间序列在微分流形上的嵌入遵循非线性动力学规律,可用李导数描述脉冲相位在流形上的传播特性:LvT=vμ∂μT+ΓμνλvνTμ其中T表示脉冲时序张量场,Γ为流形联络系数。这导致硬件编译时需要考虑流形结构的离散化近似误差。2.脉冲相位同步代数神经群体间的相位同步涉及非交换代数结构,
- NLP-gensim库
安替-AnTi
NLP
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。LSILDAHDPDTMDIMTF-IDFword2vec、paragraph2vec基本概念语料(Corpus):一组原始文
- Python自然语言处理:gensim库的探索与应用
丶本心灬
本文还有配套的精品资源,点击获取简介:本文档介绍了gensim库——一个专为Python设计的开源自然语言处理工具,它支持词向量模型、主题模型、相似度计算、TF-IDF和LSA等核心功能。该库适用于文档相似性和主题建模任务,特别强调其在处理大规模语料库中的高效性和准确性。包含gensim-4.0.0版本的预编译安装包,为64位Windows系统上的Python3.6版本提供便捷安装体验。文档还提供
- 【NLP-01】文本相似度算法:Cosine Similarity、Levenshtein Distance、Word2Vec等介绍和使用
云天徽上
NLP算法机器学习人工智能word2vec自然语言处理nlp
文本相似度计算的算法是自然语言处理领域中的关键技术,主要用于衡量两段文本在内容、语义或结构上的相似程度。以下是一些常用的文本相似度计算算法:余弦相似度(CosineSimilarity):余弦相似度是通过计算两个向量的夹角余弦值来评估它们的相似度。在文本相似度计算中,首先将文本转换为向量表示(如TF-IDF向量),然后计算这些向量之间的余弦值。余弦值越接近1,表示文本越相似。Jaccard相似度:
- 文本中地理位置提取方法—正则和NLP模型
风暴之零
python开发语言
这里写目录标题一、提取地址列后12个字二、正则表达式删除不需要的文本三、保留关键字并删除之后的字四、相似度计算,查重五、去重大量的文本中识别数据,要充分考虑效率和准确率。本文的方案是通过正则和NLP门址模型联合识别的方案。首先利用现有粗略地址将包含有地址和事由的长文本缩短到短文本,再用正则匹配出地址,然后通过匹配出地址的长度和其他规则发现没有正确识别的地址。对于这部分地址通过MGeo模型高精度实现
- 文本主题模型之潜在语义索引(LSI)
多尝试多记录多积累
好文章的搬运工:https://www.cnblogs.com/pinard/p/6805861.html先对矩阵做SVD分解,然后利用V矩阵,计算LSI,LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。需要选取主题的k值。LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在
- 第15篇:基于Milvus实现自然语言理解的实战案例
Gemini技术窝
milvusAIGC人工智能自然语言处理
自然语言理解(NLU)是自然语言处理(NLP)的一个重要分支,旨在让计算机理解和解释人类语言。NLU广泛应用于搜索引擎、智能客服、推荐系统等领域。本文将详细介绍如何基于Milvus实现自然语言理解,特别是如何实现词嵌入与句嵌入、语义相似度计算。通过详细的代码示例,逐步讲解各个步骤的原理和实现方法。文章目录自然语言理解的基本概念词嵌入句嵌入语义相似度计算环境准备安装必要的依赖包词嵌入与句嵌入的实现使
- 协同过滤(Collaborative Filtering)
pljnb
推荐算法基础算法协同过滤
协同过滤(CollaborativeFiltering)算法原理一、基于记忆的协同过滤(Memory-BasedCF)1.用户-用户协同过滤(User-BasedCF)核心思想通过计算用户之间的相似度,利用相似用户的评分预测目标用户的兴趣。算法步骤相似度计算使用余弦相似度或皮尔逊相关系数:sim(u,v)=∑i∈Iuv(rui−rˉu)(rvi−rˉv)∑i∈Iuv(rui−rˉu)2∑i∈Iuv
- 基于.NET后端实现图片搜索图片库 核心是计算上传图片与库中图片的特征向量相似度并排序展示结果
云草桑
C#.net.netmicrosoft图像处理C#
基于.NET后端实现图片搜索图片库的方案,核心是计算上传图片与库中图片的特征向量相似度并排序展示结果。整体思路图像特征提取:使用深度学习模型(如ResNet)提取图片的特征向量。特征向量存储:将图片的特征向量存储在数据库中。相似度计算:使用余弦相似度算法计算上传图片与库中图片的特征向量相似度。结果排序与展示:按相似度从高到低排序,并将相似图像展示给用户。实现步骤1.项目搭建创建一个新的.NETWe
- Python 计算文本相似度(Levenshtein、Jaccard、TF-IDF)
数据库管理员的恶梦fB
pythontf-idf开发语言
```htmlPython计算文本相似度(Levenshtein、Jaccard、TF-IDF)Python计算文本相似度(Levenshtein、Jaccard、TF-IDF)在自然语言处理(NLP)中,计算文本相似度是一个常见的任务。文本相似度可以用于搜索引擎优化、抄袭检测、推荐系统等多个领域。本文将介绍三种常用的文本相似度计算方法:Levenshtein距离、Jaccard相似系数和TF-I
- 人工智能向量化技术深度解析
二川bro
人工智能
人工智能向量化技术深度解析前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc文章目录人工智能向量化技术深度解析一、向量化技术的数学基础1.1向量空间模型原理1.2主流嵌入模型对比二、文本向量化技术解析2.1词嵌入演进路线2.2语义相似度计算三、跨模态向量化实践3.1图文跨模态对齐3.2多模态统一
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr