Why do we need it, whatever it is?
VM unicast, multicast and broadcast traffic flow is detailed in my previous post:
TL;DR: Agent OVS flow tables implement learning. That is, any unknown unicast destination (IE: MAC addresses the virtual switch is not familiar with), multicast or broadcast traffic is flooded out tunnels to all other compute nodes. Any incoming traffic is used for its source MAC address. That MAC address is added to a learning table, so future traffic to that MAC address is not flooded but sent directly to the hosting node. There’s several inefficiencies here:
A great visual explanation for the third point, stolen shamelessly from the official OpenStack documentation:
Overview
When using the ML2 plugin with tunnels and a new port goes up, ML2 sends a update_port_postcommit notification which is picked up and processed by the l2pop mechanism driver. l2 pop then gathers the IP and MAC of the port, as well as the host that the port was scheduled on; It then sends an RPC notification to all layer 2 agents. The agents uses the notification to solve the three issues detailed above.
Configuration
ml2_conf.ini: [ml2] mechanism_drivers = ..., l2population, ... [agent] l2_population = True
Deep-Dive & Code
plugins/ml2/drivers/l2pop/mech_driver.py:update_port_postcommitcalls _update_port_up. In _update_port_up we send the new ports’ IP and MAC address to all agents via a ‘add_fdb_entries’ RPC fanout cast. Additionally, if this new port is the first port in a network on the scheduled agent, then we send all IP and MAC addresses on the network to that agent.
‘add_fdb_entries’ is picked up via agent/l2population_rpc.py:add_fdb_entries, which calls fdb_add if the RPC call was a fanout, or directed to the local host.
fdb_add is implemented by the OVS and LB agents: plugins/openvswitch/agent/ovs_neutron_agent.py and plugins/linuxbridge/agent/linuxbridge_neutron_agent.py.
In the OVS agent, fdb_add accomplishes three main things:
For each port received:
Finally, with l2_population = True, a bunch of code is in the ovs agent is disabled. tunnel_update and tunnel_sync RPC messages are ignored, and replaced by fdb_add, fdb_remove.
Supported Topologies
All of this is fully supported since the Havana release when using GRE and VXLAN tunneling with the ML2 plugin, apart from the ARP resolution optimization which is implemented only for the Linux bridge agent with the VXLAN driver. ARP resolution will be added to the OVS agent with GRE and VXLAN drivers in the Icehouse release.
Links
http://docs.openstack.org/admin-guide-cloud/content/ch_networking.html#ml2_l2pop_scenarios
本文转自http://assafmuller.com/2014/02/23/ml2-address-population/