Softmax函数原理及Python实现过程解析

Softmax原理

Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。

对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果,具体计算公式为:

对于k维向量z来说,其中zi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布。

常见的其他归一化方法,如max-min、z-score方法并不能保证各个元素为正,且和为1。

Softmax性质

输入向量x加上一个常数c后求softmax结算结果不变,即:


我们使用softmax(x)的第i个元素的计算来进行证明:

Softmax函数原理及Python实现过程解析_第1张图片

函数实现

由于指数函数的放大作用过于明显,如果直接使用softmax计算公式

进行函数实现,容易导致数据溢出(上溢)。所以我们在函数实现时利用其性质:先对输入数据进行处理,之后再利用计算公式计算。具体使得实现步骤为:

  • 查找每个向量x的最大值c;
  • 每个向量减去其最大值c, 得到向量y = x-c;
  • 利用公式进行计算,softmax(x) = softmax(x-c) = softmax(y)

代码如下:

import numpy as np

def softmax(x):
  """
  softmax函数实现
  参数:
  x --- 一个二维矩阵, m * n,其中m表示向量个数,n表示向量维度
  返回:
  softmax计算结果
  """
  assert(len(X.shape) == 2)
  row_max = np.max(X, axis=axis).reshape(-1, 1)
  X -= row_max
  X_exp = np.exp(X)
  s = X_exp / np.sum(X_exp, axis=axis, keepdims=True)

  return s

测试一下:

a = [[1,2,3],[-1,-2,-3]]
b = [[1,2,3]]
c = [1,2,3]
a = np.array(a)
b = np.array(b)
c = np.array(c)

print(softmax(a))
print(softmax(b))
print(softmax(c)) # error

输出结果为:

[[ 0.09003057 0.24472847 0.66524096]
[ 0.66524096 0.24472847 0.09003057]]
[[ 0.09003057 0.24472847 0.66524096]]
Traceback (most recent call last):
assert(len(X.shape) == 2)
AssertionError

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

你可能感兴趣的:(Softmax函数原理及Python实现过程解析)