我们可以有很多方式可以把数据导入到hbase当中,比如说用map-reduce,使用TableOutputFormat这个类,但是这种方式不是最优的方式。
Bulk的方式直接生成HFiles,写入到文件系统当中,这种方式的效率很高。
一般的步骤有两步
(1)使用ImportTsv或者import工具或者自己写程序用hive/pig生成HFiles
(2)用completebulkload把HFiles加载到hdfs上
ImportTsv能把用Tab分隔的数据很方便的导入到hbase当中,但还有很多数据不是用Tab分隔的 下面我们介绍如何使用hive来导入数据到hbase当中。
1.准备输入内容
a.创建一个tables.ddl文件
-- pagecounts data comes from http://dumps.wikimedia.org/other/ pagecounts-raw/ -- documented http://www.mediawiki.org/wiki/Analytics/Wikistats -- define an external table over raw pagecounts data CREATE TABLE IF NOT EXISTS pagecounts (projectcode STRING, pagename STRING, pageviews STRING, bytes STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n' STORED AS TEXTFILE LOCATION '/tmp/wikistats'; -- create a view, building a custom hbase rowkey CREATE VIEW IF NOT EXISTS pgc (rowkey, pageviews, bytes) AS SELECT concat_ws('/', projectcode, concat_ws('/', pagename, regexp_extract(INPUT__FILE__NAME, 'pagecounts-(\\d{8}-\\d{6})\ \..*$', 1))), pageviews, bytes FROM pagecounts; -- create a table to hold the input split partitions CREATE EXTERNAL TABLE IF NOT EXISTS hbase_splits(partition STRING) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.binarysortable. BinarySortableSerDe' STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io. HiveNullValueSequenceFileOutputFormat' LOCATION '/tmp/hbase_splits_out'; -- create a location to store the resulting HFiles CREATE TABLE hbase_hfiles(rowkey STRING, pageviews STRING, bytes STRING) STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.hbase.HiveHFileOutputFormat' TBLPROPERTIES('hfile.family.path' = '/tmp/hbase_hfiles/w');
b.创建HFils分隔文件,例子:sample.hql
-- prepate range partitioning of hfiles ADD JAR /usr/lib/hive/lib/hive-contrib-0.11.0.1.3.0.0-104.jar; SET mapred.reduce.tasks=1; CREATE TEMPORARY FUNCTION row_seq AS 'org.apache.hadoop.hive.contrib.udf. UDFRowSequence'; -- input file contains ~4mm records. Sample it so as to produce 5 input splits. INSERT OVERWRITE TABLE hbase_splits SELECT rowkey FROM (SELECT rowkey, row_seq() AS seq FROM pgc TABLESAMPLE(BUCKET 1 OUT OF 10000 ON rowkey) s ORDER BY rowkey LIMIT 400) x WHERE (seq % 100) = 0 ORDER BY rowkey LIMIT 4; -- after this is finished, combined the splits file: dfs -cp /tmp/hbase_splits_out/* /tmp/hbase_splits;
c.创建hfiles.hql
ADD JAR /usr/lib/hbase/hbase-0.94.6.1.3.0.0-104-security.jar; ADD JAR /usr/lib/hive/lib/hive-hbase-handler-0.11.0.1.3.0.0-104.jar; SET mapred.reduce.tasks=5; SET hive.mapred.partitioner=org.apache.hadoop.mapred.lib. TotalOrderPartitioner; SET total.order.partitioner.path=/tmp/hbase_splits; -- generate hfiles using the splits ranges INSERT OVERWRITE TABLE hbase_hfiles SELECT * FROM pgc CLUSTER BY rowkey;
2.导入数据
注意:/$Path_to_Input_Files_on_Hive_Client是hive客户端的数据存储目录
mkdir /$Path_to_Input_Files_on_Hive_Client/wikistats wget http://dumps.wikimedia.org/other/pagecounts-raw/2008/2008-10/ pagecounts-20081001-000000.gz hadoop fs -mkdir /$Path_to_Input_Files_on_Hive_Client/wikistats hadoop fs -put pagecounts-20081001-000000. gz /$Path_to_Input_Files_on_Hive_Client/wikistats/
3.创建必要的表
注意:$HCATALOG_USER是HCatalog服务的用户(默认是hcat)
$HCATALOG_USER-f /$Path_to_Input_Files_on_Hive_Client/tables.ddl
执行之后,我们会看到如下的提示:
OK Time taken: 1.886 seconds OK Time taken: 0.654 seconds OK Time taken: 0.047 seconds OK Time taken: 0.115 seconds
4.确认表已经正确创建
执行以下语句
$HIVE_USER-e "select * from pagecounts limit 10;"
执行之后,我们会看到如下的提示:
... OK aa Main_Page 4 41431 aa Special:ListUsers 1 5555 aa Special:Listusers 1 1052
再执行
$HIVE_USER-e "select * from pgc limit 10;"
执行之后,我们会看到如下的提示:
... OK aa/Main_Page/20081001-000000 4 41431 aa/Special:ListUsers/20081001-000000 1 5555 aa/Special:Listusers/20081001-000000 1 1052 ...
5.生成HFiles分隔文件
$HIVE_USER-f /$Path_to_Input_Files_on_Hive_Client/sample.hql hadoop fs -ls /$Path_to_Input_Files_on_Hive_Client/hbase_splits
为了确认,执行以下命令
hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-1.2.0.1. 3.0.0-104.jar -libjars /usr/lib/hive/lib/hive-exec-0.11.0.1.3.0.0-104. jar -input /tmp/hbase_splits -output /tmp/hbase_splits_txt -inputformat SequenceFileAsTextInputFormat
执行之后,我们会看到如下的提示:
... INFO streaming.StreamJob: Output: /tmp/hbase_splits_txt
再执行这一句
hadoop fs -cat /tmp/hbase_splits_txt/*
执行之后,我们会看到类似这样的结果
1 61 66 2e 71 2f 4d 61 69 6e 5f 50 61 67 65 2f 32 30 30 38 31 30 30 31 2d 30 30 30 30 30 30 00 (null) 01 61 66 2f 31 35 35 30 2f 32 30 30 38 31 30 30 31 2d 30 30 30 30 30 30 00 (null) 01 61 66 2f 32 38 5f 4d 61 61 72 74 2f 32 30 30 38 31 30 30 31 2d 30 30 30 30 30 30 00 (null) 01 61 66 2f 42 65 65 6c 64 3a 31 30 30 5f 31 38 33 30 2e 4a 50 47 2f 32 30 30 38 31 30 30 31 2d 30 30 30 30 30 30 00 (null)
7.生成HFiles
HADOOP_CLASSPATH=/usr/lib/hbase/hbase-0.94.6.1.3.0.0-104-security.jar hive -f /$Path_to_Input_Files_on_Hive_Client/hfiles.hql
以上内容是hdp的用户手册中推荐的方式,然后我顺便也从网上把最后的一步的命令格式给找出来了
hadoop jar hbase-VERSION.jar completebulkload /user/todd/myoutput mytable