Eclipse下搭建Hadoop2.4.0开发环境

一、安装Eclipse

    下载Eclipse,解压安装,例如安装到/usr/local,即/usr/local/eclipse

    4.3.1版本下载地址:http://pan.baidu.com/s/1eQkpRgu

二、在eclipse上安装hadoop插件

    1、下载hadoop插件

        下载地址:http://pan.baidu.com/s/1mgiHFok

     此zip文件包含了源码,我们使用使用编译好的jar即可,解压后,release文件夹中的hadoop.eclipse-kepler-plugin-2.2.0.jar就是编译好的插件。

 

   2、把插件放到eclipse/plugins目录下

 

    3、重启eclipse,配置Hadoop installation directory    

     如果插件安装成功,打开Windows—Preferences后,在窗口左侧会有Hadoop Map/Reduce选项,点击此选项,在窗口右侧设置Hadoop安装路径。

Eclipse下搭建Hadoop2.4.0开发环境

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4、配置Map/Reduce Locations

     打开Windows—Open Perspective—Other

Eclipse下搭建Hadoop2.4.0开发环境

 

 

 

 

 

 

 

 

 

 

 

 

 

    

    选择Map/Reduce,点击OK

    

    在右下方看到如下图所示

Eclipse下搭建Hadoop2.4.0开发环境    

 

点击Map/Reduce Location选项卡,点击右边小象图标,打开Hadoop Location配置窗口:

    输入Location Name,任意名称即可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成与core-site.xml的设置一致即可。

Eclipse下搭建Hadoop2.4.0开发环境

Eclipse下搭建Hadoop2.4.0开发环境    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

点击"Finish"按钮,关闭窗口。

 点击左侧的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安装成功

   Eclipse下搭建Hadoop2.4.0开发环境

      

      

 

 

 

 

 

 

 

 

 

    如果如下图所示表示安装失败,请检查Hadoop是否启动,以及eclipse配置是否正确。

 

Eclipse下搭建Hadoop2.4.0开发环境

 

 

 

 

 

 

 

 

 

 

 

 

 

三、新建WordCount项目

    File—>Project,选择Map/Reduce Project,输入项目名称WordCount等。

    在WordCount项目里新建class,名称为WordCount,代码如下:

    

import java.io.IOException;



import java.util.StringTokenizer;



 



import org.apache.hadoop.conf.Configuration;



import org.apache.hadoop.fs.Path;



import org.apache.hadoop.io.IntWritable;



import org.apache.hadoop.io.Text;



import org.apache.hadoop.mapreduce.Job;



import org.apache.hadoop.mapreduce.Mapper;



import org.apache.hadoop.mapreduce.Reducer;



import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;



import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



import org.apache.hadoop.util.GenericOptionsParser;



 



public class WordCount {



 



public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ 



  private final static IntWritable one = new IntWritable(1);



  private Text word = new Text();



 



  public void map(Object key, Text value, Context context) throws IOException, InterruptedException {



    StringTokenizer itr = new StringTokenizer(value.toString());



      while (itr.hasMoreTokens()) {



        word.set(itr.nextToken());



        context.write(word, one);



      }



  }



}



 



public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {



  private IntWritable result = new IntWritable(); 



  public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {



    int sum = 0;



    for (IntWritable val : values) {



      sum += val.get();



    }



    result.set(sum);



    context.write(key, result);



  }



}



 



public static void main(String[] args) throws Exception {



  Configuration conf = new Configuration();



  String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();



  if (otherArgs.length != 2) {



    System.err.println("Usage: wordcount <in> <out>");



    System.exit(2);



  }



  Job job = new Job(conf, "word count");



  job.setJarByClass(WordCount.class);



  job.setMapperClass(TokenizerMapper.class);



  job.setCombinerClass(IntSumReducer.class);



  job.setReducerClass(IntSumReducer.class);



  job.setOutputKeyClass(Text.class);



  job.setOutputValueClass(IntWritable.class);



  FileInputFormat.addInputPath(job, new Path(otherArgs[0]));



  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));



  System.exit(job.waitForCompletion(true) ? 0 : 1);



}



}

 

 

四、运行

    1、在HDFS上创建目录input

        hadoop fs -mkdir input

    2、拷贝本地README.txt到HDFS的input里

         hadoop fs -copyFromLocal /usr/local/hadoop/README.txt input

    3、点击WordCount.java,右键,点击Run As—>Run Configurations,配置运行参数,即输入和输出文件夹

  hdfs://localhost:9000/user/hadoop/input hdfs://localhost:9000/user/hadoop/output

 

    Eclipse下搭建Hadoop2.4.0开发环境

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  点击Run按钮,运行程序。

 

    4、运行完成后,查看运行结果        

        方法1:

 

        hadoop fs -ls output

        可以看到有两个输出结果,_SUCCESS和part-r-00000

        执行hadoop fs -cat output/*

        

        

        方法2:

        展开DFS Locations,如下图所示,双击打开part-r00000查看结果

Eclipse下搭建Hadoop2.4.0开发环境    

          

        

 

    

你可能感兴趣的:(eclipse)