搭建量化系统|听说有个回测框架叫backtrader

backtrader属于功能相对完善的本地版Python量化回测框架。既然业界好评如云,我们作为量化交易者理应集所有好用的工具于一身,就让我们来体验一下这个框架。

backtrader的使用方法在官方文档上介绍的挺详细的。大体分为两步:

  • 创建一个策略,创建一个策略类,这个类要继承自backtrader.Strategy,然后就可以自定义里面的方法。
  • 策略类中有一个类属性params,用于定义一些在策略中可调参数值
  • backtrader.indicators内置了许多指标的计算方法,比如移动平均线、MACD、RSI等等,使用时只需要实例化策略中会使用到的技术指标即可
  • next函数中编写交易策略,也就是进入市场和退出市场的逻辑
  • 创建一个策略决策引擎(原文是Cerebro,这里我用决策这个词)
  • 把定义的策略注入到决策引擎之中
  • 把行情数据注入到决策引擎之中
  • 可视化方式反馈回测结果

以上是框架中核心的部分,当然了,其他还有很多可扩展的功能。

backtrader的数据加载非常灵活,此处我们使用DataFrame格式数据,如下所示:

"""
             High    Low   Open  Close     Volume  OpenInterest
trade_date                                                     
2017-01-03   8.12   8.07   8.07   8.12  179801.01             0
2017-01-04   8.16   8.09   8.13   8.15  166242.35             0
2017-01-05   8.23   8.13   8.15   8.17  222902.53             0
2017-01-06   8.19   8.12   8.18   8.13  128549.96             0
2017-01-09   8.15   8.08   8.13   8.13  136700.04             0
"""

构建策略的类是继承backtrader.Strategy,然后根据自己的需要重写其中的方法即可。比如__init__、log、notify_order、notify_trade、next等等。

关于策略中的指标,backtrader内置了很多类型,直接调用即可。比如移动平均线:

self.sma = bt.indicators.SimpleMovingAverage(
              self.datas[0], period=self.params.maperiod)

由于内置了talib模块,也可以这么调用:

# 内置了talib模块
self.sma = bt.talib.SMA(self.data,
         timeperiod=self.params.maperiod)

next方法中,我们实现一个简单的双均线策略作为交易的逻辑。比如买入条件是MA5上穿MA10;卖出条件是MA10下穿MA5。

关于策略回测,把数据和策略添加到Cerebro中之外,还有设置一些参数。比如broker的设置,像初始资金、交易佣金。也可以用addsizer设定每次交易买入的股数。

回测结束后返回得到执行交易策略时积累的总资金。此处我们回测的是新希望 2017年1月1日到2020年1月1日期间的策略执行效果,最终资金从10000变成了15941.95。

由于backtrader内置了Matplotlib,因此我们也可以可视化回测的效果,如下所示:

搭建量化系统|听说有个回测框架叫backtrader_第1张图片

总的来说,对于刚进阶的朋友来说是足够使用了,那么无法满足高阶玩家的需求怎么办呢?可以继承框架自己扩展。

关于以上内容更多的探讨欢迎大家关注【元宵大师带你用Python量化交易】!!

你可能感兴趣的:(前端,python,数据挖掘)