ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)

安装tensorflow报这个错,因为未指定tensorflow的版本。

解决方案:

pip install tensorflow==1.9

为了下载的快一点可以加上国内镜像的链接,加在上面这句命令后面。

-i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

最后成功安装

ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)_第1张图片

解决下述代码的keras找不到报错的问题:

from tensorflow import keras

注意:因为tensorflow版本不一样,所以这句话有好多写法,如1.9的:

from tensorflow.keras.layers import Dense

 1.3的:

from tensorflow.contrib import keras  # This works on tensorflow 1.3

总之找到好多都没用,还是要换版本哇,不要用pycharm里面太低的版本,我跟着网上的教程装了Anaconda也不太管用,而且也挺坑的。

ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)_第2张图片

ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)_第3张图片

如果你也用的是Anaconda,那在terminal里直接pip install是默认下载到如我这里的最后一个路径,但是如果自己又用的虚拟环境那就有点尴尬了。所以也要注意一下。

ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)_第4张图片

 

 

来一段我跑成功的代码:(下载数据集可能需要点时间)

import tensorflow as tf
from tensorflow import keras
import numpy as np

from matplotlib import pyplot as plt

# print(tf.__version__)
#class name
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#get data
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
#First processing
#show src pic
# plt.figure()
# # plt.imshow(train_images[0])
# # plt.colorbar()
# # plt.grid(False)
# # plt.show()
#processing
train_images = train_images / 255.0
test_images = test_images / 255.0


#training 25 pic
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
#neural model
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.compile(optimizer=tf.train.AdamOptimizer(),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
#model fit
model.fit(train_images, train_labels, epochs=5)


#test accuracy
# test_loss, test_acc = model.evaluate(test_images, test_labels)
# print('Test accuracy:', test_acc)

#predict model
predictions = model.predict(test_images)
def plot_image(i, predictions_array, true_label, img):
  predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'

  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
  predictions_array, true_label = predictions_array[i], true_label[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1])
  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')

#predict data
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)
plt.show()

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)
plt.show()

 

你可能感兴趣的:(机器学习,python,TensorFlow)