(附完整python源码)基于tensorflow、opencv的入门案例_发票识别一:关键区域定位

分为两篇博客:

发票识别一:从一张发票照片精确定位出“发票号码”、“发票代码”的数字区域

发票识别二:将发票号码”、“发票代码”的数字串分割成单个数字(源码见:后面博客)

发票识别三:制作数据集,训练cnn网络识别数字(源码见:后面博客)


注:该代码适用于 “国税通用机打发票”。尽量拍摄下正常摆放的完整发票。


发票识别一:区域精确定位

1 具体步骤

1.1 读入发票

1.2 获取矩形框:将发票可能的区域定位出来

边缘检测-二值化-形态学-轮廓检测-获取多个矩形框

hsv颜色空间 -分别提取“红、黑、蓝”的掩膜-形态学--轮廓检测-获取多个矩形框

结果:得到上百个候选框

1.3 矩形框进行初步筛选。

根据矩形框的长高信息、位置信息进行筛选

结果:剩下十多个矩形框

1.4 矩形框融合

若某个矩形框与其他矩形框重叠、交叉度极高在其他矩形框内部,将其删除

若两个矩形框在同一水平线上,有一定的交叉,且框内都包含数字,将两个框融合

结果:这一步通常还有3-6个矩形框

1.5 定位

剩下的矩形框从上到下排序。根据矩形框的相对位置、尺寸,定位出“发票号码”、“发票代码”的两个区域。

1.6 找了几张发票,地位区域如下。下一步“字符分割”,见发票识别二。

(附完整python源码)基于tensorflow、opencv的入门案例_发票识别一:关键区域定位_第1张图片          (附完整python源码)基于tensorflow、opencv的入门案例_发票识别一:关键区域定位_第2张图片


2.源码如下

2.1 main.py

# encoding: utf-8
import cv2
import numpy as np
import roi_merge as roi_
import util_funs as util
from get_rects import *
def main(img):
	region = get_rects(img)
	roi_solve = roi_.Roi_solve(region)
	roi_solve.rm_inside() 
	roi_solve.rm_overlop()
	region = roi_solve.merge_roi()
	region = util.sort_region(region)
	region = util.get_targetRoi(region)
        for i in range(2):
                rect2 = region[i]
                w1,w2 = rect2[0],rect2[0]+rect2[2]
                h1,h2 = rect2[1],rect2[1]+rect2[3]
                box = [[w1,h2],[w1,h1],[w2,h1],[w2,h2]]
                cv2.drawContours(img, np.array([box]), 0, (0, 255, 0), 1)
                if i == 0:
                        cv2.imwrite('代码'+str(k)+'.jpg', img[h1:h2,w1:w2])
                else:
                        cv2.imwrite('号码'+str(k)+'.jpg', img[h1:h2,w1:w2])
        cv2.imshow('img', img)
	cv2.waitKey(0)

if __name__ == '__main__':
	img = cv2.imread("img_path")
	main(img)

2.2 get_rects.py

# encoding: utf-8
import cv2
import numpy as np
import roi_merge as roi_
import util_funs as util
def get_rects(img_):
	region = []
	#灰度化、滤波、sobel边沿检测后,将保留下来的边界通过形态学变化进行连接成块
	img = sobel_(img_.copy())
	img = morphological_(img)
	#对所有block进行分析,保留可能的目标块,存入region中
	region = region + find_region(img)
	#代码数字的颜色可能是“红”、“黑”、“蓝”。
	#将目标颜色区域进行分离,形态学连接成块,保留可能的目标块。
	for i in range(3):
	#i=0:分类黑色; i=1:分类红色; i=2:分离蓝色
		img = color_(img_.copy(),i) 
		img = morphological_(img)
		region = region + find_region(img)
	return region

def sobel_(img):
	img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
	img = cv2.equalizeHist(img)
	# 高斯平滑
	img = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
	img = cv2.equalizeHist(img)
	# 中值滤波
	median = cv2.medianBlur(img, 5)
	# Sobel算子,X方向求梯度
	sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize = 3)
	# 二值化
	ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY)
	return binary

def color_(img,flag):
	HSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
	#LowerBlue从左到右分别表示"black","red","red","blue"的hsv值
	LowerBlue = [np.array([0,0,0]),np.array([0,43,46]),np.array([156,43,46]),np.array([100,43,46])]
	UpperBlue = [np.array([180,255,180]),np.array([10,255,255]),np.array([180,255,255]),np.array([124,255,255])]
	if flag == 0:
		mask_ = cv2.inRange(HSV.copy(),LowerBlue[3],UpperBlue[3])
	if flag == 1:
		mask_ = cv2.inRange(HSV.copy(),LowerBlue[1],UpperBlue[1]) + cv2.inRange(HSV.copy(),LowerBlue[2],UpperBlue[2])
	if flag == 2:
		mask_ = cv2.inRange(HSV.copy(),LowerBlue[0],UpperBlue[0])
	return mask_

def morphological_(img):
	# 膨胀和腐蚀操作的核函数
	element0 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7))
	element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
	# 膨胀、腐蚀、再膨胀,数字连接成一个区块
	dilation = cv2.dilate(img, element0, iterations = 1)
	erosion = cv2.erode(dilation, element0, iterations = 1)
	dilation_ = cv2.dilate(erosion, element1,iterations = 3)
	return dilation_

def find_region(img):
	#图像的宽带和高度
	h_img,w_img = img.shape
	# 查找轮廓
	_,contours,hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
	# 获取矩形框
	rect_list = []
	for i in range(len(contours)):
		cont_ = contours[i]
		# 找到boundingRect
		rect = cv2.boundingRect(cont_)
		rect_list.append(rect)
	#筛选矩形框
	region = []
	print "rect***************"
	print w_img,h_img
	print "rect***************"
	for rect in rect_list:
		# 计算高和宽
		height = rect[3]
		width = rect[2]
		# 判断高度和宽带是否满足要求
		if (width < w_img/10 or width > w_img/3 or height  h_img/15):
			continue
		# 发票代码、号码,长宽比:8-80
		ratio =float(width) / float(height)
		if (ratio > 20 or ratio < 5):
			continue
		#发票代码和发票号码在右上角
		if(rect[0] < w_img/2 or rect[1] > h_img/2):
			continue
		region.append(rect)
	return region

2.3 roi_merge.py

#encoding: utf-8
import cv2
import numpy as np

class Roi_solve:
	def __init__(self,rect): 
		self.rect = rect  #所有矩形框
		self.cursor = -1 #初始化游标位置  
		self.rect_num = len(rect) #记录rect的实时数量
	def next(self):  
		#将游标的位置前移一步,并返回所在检索位的矩形框
		self.cursor = self.cursor+1  
		return self.rect[self.cursor]
	def hasNext(self):  
		#判断是否已经检查完了所有矩形框 
		return self.rect_num > self.cursor + 1
	def remove(self,flag = -1):  
		#将非优解从数据集删除
		if flag == -1:
			del self.rect[self.cursor]
			#删除当前游标位置,游标回退一步  
			self.cursor = self.cursor-1  
		else:
			#删除后面位置的rect,游标不动
			del self.rect[flag]
		#rect数量,减1  
		self.rect_num = self.rect_num - 1
	def add(self,add_rect):
		self.rect.append(add_rect)
		self.rect_num = self.rect_num + 1
	def get_u_d_l_r(self,rect_):
		#获取rect的上下左右边界值
		upper_,down_ = rect_[1],rect_[1] + rect_[3]
		left_,right_ = rect_[0],rect_[0] + rect_[2]
		return upper_,down_,left_,right_
	def is_intersect(self,y01, y02 , x01, x02, y11, y12 , x11, x12):  
	    # 判断两个矩形是否相交    
	    lx = abs((x01 + x02) / 2 - (x11 + x12) / 2)  
	    ly = abs((y01 + y02) / 2 - (y11 + y12) / 2)  
	    sax = abs(x01 - x02)  
	    sbx = abs(x11 - x12)  
	    say = abs(y01 - y02)  
	    sby = abs(y11 - y12)  
	    if lx <= (sax + sbx) / 2 and ly <= (say + sby) / 2:  
		return True  
	    else:  
		return False  
	def intersect_area(self,y01, y02 , x01, x02, y11, y12 , x11, x12): 
		#返回两个rect的交叉面积 
	        col=min(x02,x12)-max(x01,x11)  
		row=min(y02,y12)-max(y01,y11)  
		return col*row  
	def intersect_height(self,y01, y02, y11, y12): 
		#height轴方向交叉,返回height交叉段占比
		row=float(min(y02,y12)-max(y01,y11))   
		return max(row/float(y02-y01),row/float(y12-y11))
	#remove_inside:如果“本rect”被“其他rect”包围了,则删除
	def remove_inside(self,rect_curr):
		#获取当前rect的上下左右边界信息  
		u_curr,d_curr,l_curr,r_curr = self.get_u_d_l_r(rect_curr)
		#判断当前rect是否在内部
		for rect_ in self.rect:
			u_,d_,l_,r_ = self.get_u_d_l_r(rect_)		
			if u_curr>u_ and d_currl_ and r_curr0.95:
					self.remove()
					break
	#如果“两个rect”在同一水平面上,横向坐标
	def merge(self,rect_curr):
		#获取当前rect的上下左右边界信息  
		u_curr,d_curr,l_curr,r_curr = self.get_u_d_l_r(rect_curr)
		#判断当前rect是否在内部
		for i in range(self.cursor+1,len(self.rect)):
			print i,self.cursor+1,len(self.rect)
			rect_ = self.rect[i]
			u_,d_,l_,r_ = self.get_u_d_l_r(rect_)	
			#判断是否相交	
			if self.is_intersect(u_curr,d_curr,l_curr,r_curr,u_,d_,l_,r_): 
				if self.intersect_height(u_curr,d_curr,u_,d_) > 0.6:
					if rect_curr[2] > rect_[2]:
						new_rect = np.array(rect_curr)
					else:
						new_rect = np.array(rect_)
					new_l = min(l_curr,l_)
					new_r = max(r_curr,r_)
					new_rect[0] = new_l
					new_rect[2] = new_r-new_l
					self.remove(i)
					self.remove()
					self.add(new_rect)
					break
	def rm_inside(self): 
		self.cursor = -1 
		while(self.hasNext()):  
			rect_curr = self.next()  
			self.remove_inside(rect_curr)
		return self.rect
	def rm_overlop(self):
		self.cursor = -1
		while(self.hasNext()):  
			rect_curr = self.next()  
			self.remove_overlop(rect_curr)
		return self.rect
	def merge_roi(self):
		self.cursor = -1
		while(self.hasNext()):  
			rect_curr = self.next()  
			self.merge(rect_curr)
		return self.rect

2.4 util_funs.py

#encoding:utf-8
import cv2
import numpy as np

def get_u_d_l_r(rect_):
	#获取rect的上下左右边界值
	upper_,down_ = rect_[1],rect_[1] + rect_[3]
	left_,right_ = rect_[0],rect_[0] + rect_[2]
	return upper_,down_,left_,right_

#region排序。flag=1时:从上到下;flag=0时:从左到右
def sort_region(region,flag = 1):
	temp = []
	region_new = []
	for rect in region:
		temp.append(rect[flag])
	temp_sort = sorted(temp)
	for height_ in temp_sort:
		index_ = temp.index(height_)
		region_new.append(region[index_])
	return region_new

#判断上下两个相邻框框是否为发票代码、发票号码
def judge_(rect_0,rect_1):
	u_d_l_r_0 = get_u_d_l_r(rect_0)
	u_d_l_r_1 = get_u_d_l_r(rect_1)
	#两个rect上边界之间的距离不超过box_height的四倍
	distance_ = rect_1[1] - rect_0[1]
	box_height = float(rect_0[3] + rect_1[3])/2
	#上边框的右边界值更大
	if (distance_ > 0 and distance_ < box_height*3 and rect_0[0]+rect_0[2] > rect_1[0]+rect_1[2]):
			return True
	return False

#获取 “发票代码”、“发票号码”的区域
def get_targetRoi(region):
	if len(region) > 1:
		#按照从上到下排序
		new_region = sort_region(region)
		for i in range(len(new_region)-1):
			if judge_(new_region[i],new_region[i+1]):
				return [new_region[i],new_region[i+1]]



你可能感兴趣的:((附完整python源码)基于tensorflow、opencv的入门案例_发票识别一:关键区域定位)