import os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
class BasicBlock(layers.Layer):
def __init__(self, filter_num, stride=1):
super(BasicBlock,self).__init__()
self.conv1 = layers.Conv2D(filter_num, (3,3), strides=stride, padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.Acativation('relu')
self.conv2 = layers.Conv2D(filter_num, (3,3), strides=1, padding='same')
self.bn2 = layers.BatchNormalization()
if stride != 1: #维数不为1的时候需要进行下采样
self.downsample = Sequential()
self.downsample.add(layers.Conv2D(filter_num, (1,1), strides=stride))
self.downsample.add(layers.BatchNormalization())
else:
self.downsample = lambda x: x
# self.stride = stride
def call(self, inputs, training=None):
residual = self.downsample(inputs) #原来的x
conv1 = self.conv1(inputs)
bn1 = self.bn1(conv1)
relu1 = self.relu(bn1)
conv2 = self.conv2(relu1)
bn2 = self.bn2(conv2)
add = layers.add([bn2, residual]) #shortcut
out = self.relu(add) #等价于out = tf.nn.relu(add)
return out
class ResNet(keras.Model):
def __int__(self, layer_dims, num_classes=100): #[2,2,2,2]
super(ResNet, self).__init__()
self.stem = Sequential([layers.Conv2D(64,(3,3),strides=(1,1)),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPool2D(pool_size=(2,2),strides=(1,1),padding='same')])
self.layer1 = self.build_resblock(64, layer_dims[0])
self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)
# output: [b, 512, h, w]
self.avgpool = layers.GlobalAveragePooling2D() #功能层
self.fc = layers.Dense(num_classes)
def call(self, inputs, trianing=None):
x = self.stem(inputs)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
#[b,c]
x = self.avgpool(x)
x = self.fc(x)
return x
def build_resblock(self, filter_num, blocks, stride=1):
#may downsample
res_blocks = keras.Sequential()
res_blocks.add(BasicBlock(filter_num, stride))
for _ in range(1, blocks):
res_blocks.add(BasicBlock(filter_num, stride=1))
return res_blocks
def resnet18():
return ResNet([2,2,2,2])
def resnet34():
return ResNet([3,4,6,3])
import os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.random.set_seed(2345)
from resnet import resnet18
def preprocess(x, y):
# [0~1]
x = tf.cast(x, dtype=tf.float32) / 255. - 1
y = tf.cast(y, dtype=tf.int32)
return x, y
batchsz = 256
#[32, 32, 3], [10k, 1]
(x,y), (x_val, y_val) = datasets.cifar100.load_data()
y = tf.squeeze(y,axis=1)
y_val = tf.squeeze(y_val,axis=1) #注意维度变换
print(x.shape,y.shape,x_val.shape,y_val.shape)
train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(1000).map(preprocess).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices((x_val,y_val))
test_db = test_db.map(preprocess).batch(batchsz)
sample = next(iter(train_db))
print('batch: ', sample[0].shape, sample[1].shape)
def main():
model = resnet18()
model.summary()
model.build(input_shape=(None,32,32,3))
optimizer = optimizers.Adam(lr=1e-4)
#拼接需要训练的参数 [1,2] + [3,4] = [1,2,3,4]
for epoch in range(50):
for step, (x,y) in enumerate(train_db):
with tf.GradientTape() as tape:
#[b,32,32,3] => [b,1,1,512]
logits = model(x)
y_onehot = tf.one_hot(y, depth=100) #[50k, 10]
# y_val_onehot = tf.one_hot(y_val, depth=100)
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trianabel_variables))
if step % 100 == 0:
print(epoch, step, 'loss: ', float(loss))
total_num = 0
total_correct = 0
for x, y in test_db:
logits = model(x)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print('acc: ',acc)
if __name__ == '__main__':
main()
代码借鉴了网易云课堂龙老师的tensorflow2.0教材,仅供交流使用.