This is a short introduction to pandas, geared mainly for new users.
Customarily, we import as follows
In [1]: import pandas as pd
In [2]: import numpy as np
See the Data Structure Intro section
Creating a Series by passing a list of values, letting pandas create a default integer index
In [3]: s = pd.Series([1,3,5,np.nan,6,8])
In [4]: s
Out[4]:
0 1
1 3
2 5
3 NaN
4 6
5 8
dtype: float64
Creating a DataFrame by passing a numpy array, with a datetime index and labeled columns.
In [5]: dates = pd.date_range('20130101',periods=6)
In [6]: dates
Out[6]:
[2013-01-01 00:00:00, ..., 2013-01-06 00:00:00]
Length: 6, Freq: D, Timezone: None
In [7]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
In [8]: df
Out[8]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
Creating a DataFrame by passing a dict of objects that can be converted to series-like.
In [9]: df2 = pd.DataFrame({ 'A' : 1.,
...: 'B' : pd.Timestamp('20130102'),
...: 'C' : pd.Series(1,index=range(4),dtype='float32'),
...: 'D' : np.array([3] * 4,dtype='int32'),
...: 'E' : 'foo' })
...:
In [10]: df2
Out[10]:
A B C D E
0 1 2013-01-02 00:00:00 1 3 foo
1 1 2013-01-02 00:00:00 1 3 foo
2 1 2013-01-02 00:00:00 1 3 foo
3 1 2013-01-02 00:00:00 1 3 foo
Having specific dtypes
In [11]: df2.dtypes
Out[11]:
A float64
B datetime64[ns]
C float32
D int32
E object
dtype: object
See the Basics section
See the top & bottom rows of the frame
In [12]: df.head()
Out[12]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
In [13]: df.tail(3)
Out[13]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
Display the index,columns, and the underlying numpy data
In [14]: df.index
Out[14]:
[2013-01-01 00:00:00, ..., 2013-01-06 00:00:00]
Length: 6, Freq: D, Timezone: None
In [15]: df.columns
Out[15]: Index([A, B, C, D], dtype=object)
In [16]: df.values
Out[16]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])
Describe shows a quick statistic summary of your data
In [17]: df.describe()
Out[17]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804
Transposing your data
In [18]: df.T
Out[18]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
Sorting by an axis
In [19]: df.sort_index(axis=1, ascending=False)
Out[19]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690
Sorting by values
In [20]: df.sort(columns='B')
Out[20]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
Note
While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc, .iloc and .ix.
See the Indexing section and below.
Selecting a single column, which yields a Series, equivalent to df.A
In [21]: df['A']
Out[21]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64
Selecting via [], which slices the rows.
In [22]: df[0:3]
Out[22]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [23]: df['20130102':'20130104']
Out[23]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
See more in Selection by Label
For getting a cross section using a label
In [24]: df.loc[dates[0]]
Out[24]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
Selecting on a multi-axis by label
In [25]: df.loc[:,['A','B']]
Out[25]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
Showing label slicing, both endpoints are included
In [26]: df.loc['20130102':'20130104',['A','B']]
Out[26]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
Reduction in the dimensions of the returned object
In [27]: df.loc['20130102',['A','B']]
Out[27]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64
For getting a scalar value
In [28]: df.loc[dates[0],'A']
Out[28]: 0.46911229990718628
For getting fast access to a scalar (equiv to the prior method)
In [29]: df.at[dates[0],'A']
Out[29]: 0.46911229990718628
See more in Selection by Position
Select via the position of the passed integers
In [30]: df.iloc[3]
Out[30]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64
By integer slices, acting similar to numpy/python
In [31]: df.iloc[3:5,0:2]
Out[31]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
By lists of integer position locations, similar to the numpy/python style
In [32]: df.iloc[[1,2,4],[0,2]]
Out[32]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232
For slicing rows explicitly
In [33]: df.iloc[1:3,:]
Out[33]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
For slicing columns explicitly
In [34]: df.iloc[:,1:3]
Out[34]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427
For getting a value explicity
In [35]: df.iloc[1,1]
Out[35]: -0.17321464905330858
For getting fast access to a scalar (equiv to the prior method)
In [36]: df.iat[1,1]
Out[36]: -0.17321464905330858
There is one signficant departure from standard python/numpy slicing semantics. python/numpy allow slicing past the end of an array without an associated error.
# these are allowed in python/numpy.
In [37]: x = list('abcdef')
In [38]: x[4:10]
Out[38]: ['e', 'f']
In [39]: x[8:10]
Out[39]: []
Pandas will detect this and raise IndexError, rather than return an empty structure.
>>> df.iloc[:,8:10]
IndexError: out-of-bounds on slice (end)
Using a single column’s values to select data.
In [40]: df[df.A > 0]
Out[40]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
A where operation for getting.
In [41]: df[df > 0]
Out[41]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988
Setting a new column automatically aligns the data by the indexes
In [42]: s1 = pd.Series([1,2,3,4,5,6],index=date_range('20130102',periods=6))
In [43]: s1
Out[43]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64
In [44]: df['F'] = s1
Setting values by label
In [45]: df.at[dates[0],'A'] = 0
Setting values by position
In [46]: df.iat[0,1] = 0
Setting by assigning with a numpy array
In [47]: df.loc[:,'D'] = np.array([5] * len(df))
The result of the prior setting operations
In [48]: df
Out[48]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2
2013-01-04 0.721555 -0.706771 -1.039575 5 3
2013-01-05 -0.424972 0.567020 0.276232 5 4
2013-01-06 -0.673690 0.113648 -1.478427 5 5
A where operation with setting.
In [49]: df2 = df.copy()
In [50]: df2[df2 > 0] = -df2
In [51]: df2
Out[51]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5
Pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See the Missing Data section
Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.
In [52]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E'])
In [53]: df1.loc[dates[0]:dates[1],'E'] = 1
In [54]: df1
Out[54]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3 NaN
To drop any rows that have missing data.
In [55]: df1.dropna(how='any')
Out[55]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
Filling missing data
In [56]: df1.fillna(value=5)
Out[56]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 5
2013-01-04 0.721555 -0.706771 -1.039575 5 3 5
To get the boolean mask where values are nan
In [57]: pd.isnull(df1)
Out[57]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True
See the Basic section on Binary Ops
Operations in general exclude missing data.
Performing a descriptive statistic
In [58]: df.mean()
Out[58]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
Same operation on the other axis
In [59]: df.mean(1)
Out[59]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64
Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.
In [60]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)
In [61]: s
Out[61]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1
2013-01-04 3
2013-01-05 5
2013-01-06 NaN
Freq: D, dtype: float64
In [62]: df.sub(s,axis='index')
Out[62]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4 1
2013-01-04 -2.278445 -3.706771 -4.039575 2 0
2013-01-05 -5.424972 -4.432980 -4.723768 0 -1
2013-01-06 NaN NaN NaN NaN NaN
Applying functions to the data
In [63]: df.apply(np.cumsum)
Out[63]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1
2013-01-03 0.350263 -2.277784 -1.884779 15 3
2013-01-04 1.071818 -2.984555 -2.924354 20 6
2013-01-05 0.646846 -2.417535 -2.648122 25 10
2013-01-06 -0.026844 -2.303886 -4.126549 30 15
In [64]: df.apply(lambda x: x.max() - x.min())
Out[64]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64
See more at Histogramming and Discretization
In [65]: s = Series(np.random.randint(0,7,size=10))
In [66]: s
Out[66]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int64
In [67]: s.value_counts()
Out[67]:
4 5
6 2
2 2
1 1
dtype: int64
See more at Vectorized String Methods
In [68]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [69]: s.str.lower()
Out[69]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
Pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.
See the Merging section
Concatenating pandas objects together
In [70]: df = pd.DataFrame(np.random.randn(10, 4))
In [71]: df
Out[71]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
In [72]: pieces = [df[:3], df[3:7], df[7:]]
In [73]: concat(pieces)
Out[73]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
SQL style merges. See the Database style joining
In [74]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [75]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [76]: left
Out[76]:
key lval
0 foo 1
1 foo 2
In [77]: right
Out[77]:
key rval
0 foo 4
1 foo 5
In [78]: merge(left, right, on='key')
Out[78]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
Append rows to a dataframe. See the Appending
In [79]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [80]: df
Out[80]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
In [81]: s = df.iloc[3]
In [82]: df.append(s, ignore_index=True)
Out[82]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610
By “group by” we are referring to a process involving one or more of the following steps
- Splitting the data into groups based on some criteria
- Applying a function to each group independently
- Combining the results into a data structure
See the Grouping section
In [83]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B' : ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C' : randn(8), 'D' : randn(8)})
....:
In [84]: df
Out[84]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
Grouping and then applying a function sum to the resulting groups.
In [85]: df.groupby('A').sum()
Out[85]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958
Grouping by multiple columns forms a hierarchical index, which we then apply the function.
In [86]: df.groupby(['A','B']).sum()
Out[86]:
C D
A B
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434
See the section on Hierarchical Indexing and see the section on Reshaping).
In [87]: tuples = zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']])
....:
In [88]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [89]: df = pd.DataFrame(randn(8, 2), index=index, columns=['A', 'B'])
In [90]: df2 = df[:4]
In [91]: df2
Out[91]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
The stack function “compresses” a level in the DataFrame’s columns.
In [92]: stacked = df2.stack()
In [93]: stacked
Out[93]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype: float64
With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:
In [94]: stacked.unstack()
Out[94]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
In [95]: stacked.unstack(1)
Out[95]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230
In [96]: stacked.unstack(0)
Out[96]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230
See the section on Pivot Tables.
In [97]: df = DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
....: 'B' : ['A', 'B', 'C'] * 4,
....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
....: 'D' : np.random.randn(12),
....: 'E' : np.random.randn(12)})
....:
In [98]: df
Out[98]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115
We can produce pivot tables from this data very easily:
In [99]: pivot_table(df, values='D', rows=['A', 'B'], cols=['C'])
Out[99]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826
Pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section
In [100]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [101]: ts = pd.Series(randint(0, 500, len(rng)), index=rng)
In [102]: ts.resample('5Min', how='sum')
Out[102]:
2012-01-01 25083
Freq: 5T, dtype: int64
Time zone representation
In [103]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
In [104]: ts = pd.Series(randn(len(rng)), rng)
In [105]: ts_utc = ts.tz_localize('UTC')
In [106]: ts_utc
Out[106]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
Convert to another time zone
In [107]: ts_utc.tz_convert('US/Eastern')
Out[107]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
Converting between time span representations
In [108]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [109]: ts = pd.Series(randn(len(rng)), index=rng)
In [110]: ts
Out[110]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64
In [111]: ps = ts.to_period()
In [112]: ps
Out[112]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64
In [113]: ps.to_timestamp()
Out[113]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64
Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:
In [114]: prng = period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [115]: ts = Series(randn(len(prng)), prng)
In [116]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [117]: ts.head()
Out[117]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64
Plotting docs.
In [118]: ts = pd.Series(randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [119]: ts = ts.cumsum()
In [120]: ts.plot()
Out[120]: <matplotlib.axes.AxesSubplot at 0x40d5110>
On DataFrame, plot is a convenience to plot all of the columns with labels:
In [121]: df = pd.DataFrame(randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....:
In [122]: df = df.cumsum()
In [123]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[123]: <matplotlib.legend.Legend at 0x4321d90>
Writing to a csv file
In [124]: df.to_csv('foo.csv')
Reading from a csv file
In [125]: pd.read_csv('foo.csv')
Out[125]:
Int64Index: 1000 entries, 0 to 999
Data columns (total 5 columns):
Unnamed: 0 1000 non-null values
A 1000 non-null values
B 1000 non-null values
C 1000 non-null values
D 1000 non-null values
dtypes: float64(4), object(1)
Reading and writing to HDFStores
Writing to a HDF5 Store
In [126]: df.to_hdf('foo.h5','df')
Reading from a HDF5 Store
In [127]: read_hdf('foo.h5','df')
Out[127]:
DatetimeIndex: 1000 entries, 2000-01-01 00:00:00 to 2002-09-26 00:00:00
Freq: D
Data columns (total 4 columns):
A 1000 non-null values
B 1000 non-null values
C 1000 non-null values
D 1000 non-null values
dtypes: float64(4)
Reading and writing to MS Excel
Writing to an excel file
In [128]: df.to_excel('foo.xlsx', sheet_name='sheet1')
Reading from an excel file
In [129]: xls = ExcelFile('foo.xlsx')
In [130]: xls.parse('sheet1', index_col=None, na_values=['NA'])
Out[130]:
DatetimeIndex: 1000 entries, 2000-01-01 00:00:00 to 2002-09-26 00:00:00
Data columns (total 4 columns):
A 1000 non-null values
B 1000 non-null values
C 1000 non-null values
D 1000 non-null values
dtypes: float64(4)