机器学习深度学习 笔试面试题目整理(2)

题目来源:

  1. 面试笔试整理3:深度学习机器学习面试问题准备(必会)
  2. 深度学习面试题
  3. 深度学习岗位面试题

1. CNN问题:

(1) 思想 
  改变全连接为局部连接,这是由于图片的特殊性造成的(图像的一部分的统计特性与其他部分是一样的),通过局部连接和参数共享大范围的减少参数值。可以通过使用多个filter来提取图片的不同特征(多卷积核)。 
   
(2)filter尺寸的选择 
  通常尺寸多为奇数(1,3,5,7) 

(3)输出尺寸计算公式 
  输出尺寸=(N - F +padding*2)/stride + 1 
  步长可以自由选择通过补零的方式来实现连接。 
   
(4)pooling池化的作用 
  虽然通过.卷积的方式可以大范围的减少输出尺寸(特征数),但是依然很难计算而且很容易过拟合,所以依然利用图片的静态特性通过池化的方式进一步减少尺寸。 

(5)常用的几个模型,这个最好能记住模型大致的尺寸参数。见:CNN 常用的几个模型 LeNet5 AlexNet VGGNet Google Inception Net 微软ResNet残差神经网络

名称 特点
LeNet5 –没啥特点-不过是第一个CNN应该要知道
AlexNet 引入了ReLU和dropout,引入数据增强、池化相互之间有覆盖,三个卷积一个最大池化+三个全连接层
VGGNet 采用1*1和3*3的卷积核以及2*2的最大池化使得层数变得更深。常用VGGNet-16和VGGNet19
Google Inception Net
我称为盗梦空间网络
这个在控制了计算量和参数量的同时,获得了比较好的分类性能,和上面相比有几个大的改进:
  1、去除了最后的全连接层,而是用一个全局的平均池化来取代它;
  2、引入Inception Module,这是一个4个分支结合的结构。所有的分支都用到了1*1的卷积,这是因为1*1性价比很高,可以用很少的参数达到非线性和特征变换。
  3、Inception V2第二版将所有的5*5变成2个3*3,而且提出来著名的Batch Normalization;
  4、Inception V3第三版就更变态了,把较大的二维卷积拆成了两个较小的一维卷积,加速运算、减少过拟合,同时还更改了Inception Module的结构。
微软ResNet残差神经网络(Residual Neural Network) 1、引入高速公路结构,可以让神经网络变得非常深
2、ResNet第二个版本将ReLU激活函数变成y=x的线性函数

 

2. RNN问题

1、RNN原理: 
  在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward+Neural+Networks)。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出。所以叫循环神经网络 
2、RNN、LSTM、GRU区别

  • RNN引入了循环的概念,但是在实际过程中却出现了初始信息随时间消失的问题,即长期依赖(Long-Term Dependencies)问题,所以引入了LSTM。
  • LSTM:因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸。推导forget gate,input gate,cell state, hidden information等因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸的变化是关键,下图非常明确适合记忆: 
  • GRU是LSTM的变体,将忘记门和输入们合成了一个单一的更新门。 

3、LSTM防止梯度弥散和爆炸 
  LSTM用加和的方式取代了乘积,使得很难出现梯度弥散。但是相应的更大的几率会出现梯度爆炸,但是可以通过给梯度加门限解决这一问题。 
   
4、引出word2vec 
  这个也就是Word Embedding,是一种高效的从原始语料中学习字词空间向量的预测模型。分为CBOW(Continous Bag of Words)和Skip-Gram两种形式。其中CBOW是从原始语句推测目标词汇,而Skip-Gram相反。CBOW可以用于小语料库,Skip-Gram用于大语料库。具体的就不是很会了。

你可能感兴趣的:(机器学习,深度学习)