《大话数据结构》读书笔记(四)

第8章 查找(Searching)


查找:根据给定的某个值,在查找表中确定一个字等于给定值的数据元素(或记录)


顺序查找(Sequential Search)
顺序查找又叫线性查找,从表中第一个(或最后一个)记录开始,逐个进行记录的关键字和给定值比。

顺序查找的时间复杂度为O(n)

/* 顺序查找,a为数组,n为要查找的数组个数,key为要查找的关键字 */
int Sequential_Search(int *a, int n, int key)
{
	int i;
	
	for(i=1;i<=n;i++)
	{
		if (a[i] ==key)
			return i;
	}
	
	return 0;
}

/* 有哨兵顺序查找 */
int Sequential_Search2(int *a,int n,int key)
{
	int i;
	
	a[0] = key;
	
	i = n;
	
	while(a[i] != key)
	{
		i--;
	}
	
	return i;    /* 返回0则说明查找失败 */
}

有序表查找


折半查找(Binary Search)
折半查找的时间复杂度为O(logn)

int Binary_Search(int *a, int n, int key)
{
	int low,high,mid;
	
	low=1;
	
	high=n;
	
	while(low<=high)
	{
		mid = (low+high)/2;
		if(keya[mid])
			low = mid+1;
		else
			return mid;
	}	
	
	return 0;
}

插值查找(Interpolation Search)
根据要查找的关键字key与查找表中最大最小记录的关键字比较后的查找方法,其核心就在与插值的计算公式。
mid = low+(high-low)*(key-a[low])/(a[high]-a[low])
时间复杂度O(logn)


斐波那契查找(Fibonacci Search)

/* 斐波那契查找 */
int Fibonacci_Search(int *a, int n, int key)
{
	int low, high, mid, i, k;
	low =1;
	high =n;
	k =0;
	
	while(n>F[k]-1)    /* 计算n位于斐波那契数列的位置 */
		k++;
	
	for(i=n;ia[mid]) /* 若查找记录大于当前分隔记录 */
		{
			low=mid+1;         /* 最低下标调整到分隔下标mid+1处 */
			k = k-2;           /* 斐波那契数列下标减两位 */
		}
		else
		{
			if (mid<=n)
				return mid;      /* 若相等则说明mid即为查找到的位置 */
			else
				return n;        /* 若mid>n说明是补全数值,返回n */
		}
		
		return 0;
	}	
}

/* 斐波那契递归函数 */
int Fbi(int i)
{
	if (i < 2)
		return (i==0)? 0 : 1;
	
	return Fbi(i-1)+Fbi(i-2);
}

线性索引查找
线性索引就是将索引项集合组织为线性结构,包括稠密索引、分块索引和倒排索引。


二叉排序树(Binary Sort Tree)
二叉排序树又称二叉查找树。它或者是一棵空树,或者是具有下列性质的二叉树。
1)左子树均小于它的根结构的值。
2)右子树均大于它的根结构的值。
3)它的左右子树也分别为二叉排序树。


/* 二叉树的二叉链表结点结构定义 */
typedef struct BiTNode
{
	int data;  
	
	struct BiTNode *lchild, *rchild;
	
}BiTNode, *BiTree;


二叉树的查找操作

/* 递归查找二叉排序树T中是否存在key */
/* 指针f指向T的双亲,其初始调用值为NULL */
/* 若查找成功,则指针p指向该数据元素结点,并返回true */
/* 否则指针p指向查找路径上访问的最后一个结点并返回false */
Status SearchBST(BiTree T, int key, BiTree f, BiTree *p)
{
	if (! T)
	{
		*p = f;
		return false;
	}
	else if (key==T->data)
	{
		*p = T;
		return true;
	}
	else if (key data)
		return SearchBST(T->lchild,key,T,p);
	else
		return SearchBST(T->rchild,key,T,p);
}

二叉树插入操作

/* 当二叉排序树T中不存在关键字等于key的元素时*/
/* 插入key并返回true,否则返回false*/
Status InsertBST(BiTree *T, int key)
{
	BiTree p,s;
	
	if (!SearchBST(*T,key,NULL,&p))
	{
		s = (BiTree) malloc (sizeof(BiTNode));
		s->data = key;
		s-lchild = s->rchild = NULL;
		
		if (!p)
			*T = s;        /* 插入s为新的根结点 */
		else if (keydata)
			p->lchild = s;
		else
			p->rchild = s;
		
		return true;
	}
	else
		return false;
}

二叉排序树删除操作

/* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点,*/
/* 并返回true,否则返回false */
Status DeleteBST(BiTree *T, int key)
{
	if (! *T)
		return false;
	else
	{
		if (key == (*T)->data)
			return Delete(T);
		else if (key < (*T)->data)
			return DeleteBST(& (*T)->lchild,key);
		else
			return DeleteBST(& (*T)->rchild,key);
	}
}

/* 从二叉排序树中删除结点p,并重接它的左或右子树 */
Status Delete(BiTree *p)
{
	BiTree q,s;
	
	if ((*p)->rchild == NULL)   /* 右子树空则只需重接它的左子树 */
	{
		q=*p;*p=(*p)->lchild;free(q);
	}
	else if ((*p)->lchild == NULL)  /* 左子树空则只需重接它的右子树 */
	{
		q=*p;*p=(*p)->rchild;free(q);
	}
	else
	{
		q=*p;
		s = (*p)->lchild;
		while(s->rchild)      /* 转左,然后向右到尽头(找待删结点的前驱)*/
		{
			q=s;s=s->rchild;
		}
		(*p)->data = s->data; /* s指向被删结点的直接前驱 */
		
		if (q!=*p)
			q->rchild = s->lchild;  /* 重接q的右子树 */
		else
			q->lchild = s->lchild;  /* 重接q的左子树 */
		
		free(s);		
	}
	
	return true;
}

平衡二叉树(AVL树)


平衡二叉树(Self-Balancing Binary Search Tree 或 Height-Balanced Binary Search Tree),
是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至少等于1.


平衡因子BF(Balance Factor):将二叉树上结点的左子树深度减去右子树深度的值。
平衡二叉树上所有结点的平衡因子只可能是-1、0和1.


平衡二叉树实现算法

/* 二叉树的二叉链表结点结构定义 */
typedef struct BiTNode    /* 结点结构 */
{
	int data;               /* 结点数据 */
	
	int bf;                 /* 结点的平衡因子 */
	
	struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
	
}BiTNode, *BiTree;

右旋操作

/* 对以p为根的二叉排序树作右旋处理, */
/* 处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 */
void R_Rotate(BiTree *P)
{
	BiTree L;
	
	L = (*P)->lchild;            /* L指向P的左子树根结点 */
	
	(*P)->lchild = L->rchild;    /* L的右子树挂接为P的左子树 */
	
	L->rchild = (*P); 
	
	*P = L;                      /* P指向新的根结点 */
}

左旋操作

/* 对以p为根的二叉排序树作左旋处理, */
/* 处理之后p指向新的树根结点,即旋转处理之前的右子树的根结点 */
void R_Rotate(BiTree *P)
{
	BiTree R;
	
	R = (*P)->rchild;            /* R指向P的右子树根结点 */
	
	(*P)->rchild = R->lchild;    /* R的左子树挂接为P的右子树 */
	
	R->lchild = (*P); 
	
	*P = R;                      /* P指向新的根结点 */
}

左平衡旋转处理

#define  LH +1   /* 左高 */
#define  EH  0   /* 等高 */
#define  RH -1   /* 右高 */

/* 对以指针T所指结点为根的二叉树作左平衡旋转处理 */
/* 本算法结束时,指针T指向新的根结点 */
void LeftBalance(BiTree *T)
{
	BiTree L, Lr;
	
	L = (*T)->lchild;    /* L指向T的左子树根结点 */
	
	switch(L->bf)
	{
		/* 检查T的左子树的平衡度,并作相应的平衡处理 */
		case LH:                  /* 新结点插入在T的左孩子的左子树上,要作单右旋处理 */
			(*T)->bf = L->bf = EH;
			R_Rotate(T);
			break;
		
		case RH:                  /* 新结点插入在T的左孩子的右子树上,要作双旋处理 */
			Lr = L->rchild;         /* Lr指向T的左孩子的右子树根 */
			switch(Lr->bf)          /* 修改T及其左孩子的平衡因子 */
			{
				case LH:
					(*T)->bf = RH;
					L->bf = EH;
					break;
				
				case EH:
					(*T)->bf = L->bf = EH;
					break;
				
				case RH:
					(*T)->bf = EH;
					L->bf = LH;
					break;
			}
			
			Lr->bf = EH;
			L_Rotate(& (*T)->lchild);   /* 对T的左子树作左旋平衡处理 */
			R_Rotate(T);			          /* 对T作右旋平衡处理 */
	}	
}

插入实现代码

/* 若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */
/* 数据元素e的新结点并返回1,否则返回0.若因插入而使二叉排序树失去 */
/* 平衡,则作平衡旋转处理,布尔变量taller反映T长高与否 */
Status InsertAVL(BiTree *T, int e, Status *taller)
{
	if (!*T)
	{
		/* 插入新结点,树“长高”,置taller为true */
		*T = (BiTree) malloc (sizeof(BiTNode));
		(*T)->data =e;
		(*T)->lchild = (*T)->rchild = NULL;
		(*T)->bf = EH;
		*taller = true;
	}
	else
	{
		if (e == (*T)->data)
		{
			/* 树中已存在和e有相同关键字的结点则不再插入 */
			*taller = false;
			return false;
		}
		
		if (e<(*T)->data)
		{
			/* 应继续在T的左子树中进行搜索 */
			if (!InsertAVL(&(*T)->lchild,e,taller))   /* 未插入 */
				return false;
			
			if (*taller)     /* 已插入到T的左子树中且左子树“长高” */
			{
				switch((*T)->bf)   /* 检查T的平衡度 */
				{
					case LH:         /* 原本左子树比右子树高,需要作左平衡处理 */
						LeftBalance(T);
						*taller = false;
						break;
					
					case EH:         /* 原本左右子树等高,现因左子树增高而树增高 */
						(*T)->bf = LH
						*taller = true;
						break;
					
					case RH:         /* 原本右子树比左子树高,现在左右子树等高 */
						(*T)->bf = EH;
						*taller = false;
						break;
				}
			}
		}
		else
		{
			/* 应继续在T的右子树中进行搜索 */
			if (!InsertAVL(&(*T)->rchild,e,taller))    /* 未插入 */
				return false;

			if (*taller)     /* 已插入到T的右子树中且右子树“长高” */
			{
				switch((*T)->bf)
				{
					case LH:
						(*T)->bf = EH;
						*taller = false;
						break;
											
					case EH:
						(*T)->bf = RH
						*taller = true;
						break;
					
					case RH:
						RightBalance(T);
						*taller = false;
						break;
				}
			}			
		}
	}
	return true;
}

平衡二叉树的查找、插入和删除的时间复杂度都是Ologn)。

 

多路查找数(B树)

 

散列表查找(哈希表)

 

散列函数构造方法

 

直接定址法

 

数字分析法

 

平方取中法

 

折叠法

 

除留余数法

f(key) = key mod p (p<=m)

 

随机数法

f(key) = random(key)

 

处理散列冲突方法

 

开放定址法,也称为线性探测法,一旦发生了冲突,就去寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到,并将记录存入。

fi(key) = (f(key) + di) MOD m (di=1,2,3,……,m-1)

 

二次探测法

fi(key) = (f(key) + di) MOD m (di=1^2,-1^2,2^2,-2^2,……,q^2,-q^2,q<=m/2)

 

在冲突时,对于位移量di采用随机函数计算得到,称为随机探测法

fi(key) = (f(key) + di) MOD m (di是一个随机数列)

 

再散列函数法

fi(key) = RHi(key) (i=1,2,……,k),其中RHi就是不同的散列函数

 

链地址法

 

公共溢出区法

 

散列表查找实现

#define SUCCESS   1
#define UNSUCCESS 0
#define HASHSIZE  12        /* 定义散列表长为数组的长度 */
#define NULLKEY   -32768

typedef struct
{
	int *elem;                /* 数据元素存储基址,动态分配数组 */
	
	int count;                /* 当前数据元素个数 */
	
}HashTable;

int m = 0;                  /* 散列表表长,全局变量 */

/* 初始化散列表 */
Status InitHashTable(HashTable *H)
{
	int i;
	m = HASHSIZE;
	H->count = m;
	H->elem = (int *)malloc(m*sizeof(int));
	for(i=0;ielem[i] = NULLKEY;
	
	return OK;	
}

/* 散列函数 */
int Hash(int key)
{
	return key % m; /* 除留余数法 */
}

/* 插入关键字进散列表 */
void InsertHash(HashTable *H, int key)
{
	int addr = Hash(key);            /* 求散列地址 */
	
	/* 开放定址法的线性探测 */
	while(H->elem[addr] != NULLKEY)
		addr = (addr+1) %m;
	
	H->elem[addr] = key;
}

/* 散列表查找关键字 */
Status SearchHash(HashTable H, int key, int *addr)
{
	*addr = Hash(key);
	
	while(H.elem[*addr] != key)       /* 如果不为空,则冲突 */
	{
		*addr = (*addr+1) % m;          /* 开放定址法的线性探测 */
		
		/* 如果循环回到原点 */
		if (H.elem[*addr] == NULLKEY || *addr == Hash(key))
		{
			return UNSUCCESS;    /* 说明关键字不存在 */
		}
	}
	
	return SUCCESS;
}



你可能感兴趣的:(数据结构)