目录
命令列表
Rasa init 创建新项目
Rasa train 训练rasa模型
可选择的参数
rasa run
更多解释详见
命令 |
简介 |
---|---|
|
使用示例训练数据,操作和配置文件创建一个新项目。位于空目录下运行即可 |
|
使用您的NLU数据和故事来训练模型,并将训练后的模型保存在中 |
|
开始一个交互式学习会话,以通过聊天创建新的训练数据。 |
|
加载经过训练的模型,并允许您在命令行上与助手交谈。 |
|
使用训练有素的模型启动Rasa服务器。有关详细信息,请参见配置HTTP API文档。 |
|
使用Rasa SDK启动动作服务器。 |
|
可视化故事。 |
|
使用您的测试NLU数据和故事测试经过训练的Rasa模型。 |
|
根据指定的百分比对NLU数据进行拆分。 |
|
在不同格式之间转换NLU训练数据。 |
|
将对话从跟踪商店存储到事件代理。 |
|
在本地启动RasaX。 |
|
显示所有可用命令。 |
在空目录加运行即可创建一下文件,一个简单的rasa项目
该命令同时训练Rasa NLU和Rasa Core模型。如果只想训练NLU或Core模型,则可以运行下面代码。如果训练数据和配置未更改,Rasa将自动跳过训练core或NLU。
rasa train nlu
rasa train core
rasa train
会将经过训练的模型存储在定义的目录中--out
。默认情况下,模型名称为
。如果要使用不同的名称命名模型,可以使用来指定名称--fixed-model-name
。
usage: rasa train [-h] [-v] [-vv] [--quiet] [--data DATA [DATA ...]]
[-c CONFIG] [-d DOMAIN] [--out OUT]
[--augmentation AUGMENTATION] [--debug-plots]
[--num-threads NUM_THREADS]
[--fixed-model-name FIXED_MODEL_NAME] [--persist-nlu-data]
[--force]
{core,nlu} ...
positional arguments:
{core,nlu}
core Trains a Rasa Core model using your stories.
nlu Trains a Rasa NLU model using your NLU data.
optional arguments:
-h, --help show this help message and exit
--data DATA [DATA ...]
Paths to the Core and NLU data files. (default:
['data'])
-c CONFIG, --config CONFIG
The policy and NLU pipeline configuration of your bot.
(default: config.yml)
-d DOMAIN, --domain DOMAIN
Domain specification (yml file). (default: domain.yml)
--out OUT Directory where your models should be stored.
(default: models)
--augmentation AUGMENTATION
How much data augmentation to use during training.
(default: 50)
--debug-plots If enabled, will create plots showing checkpoints and
their connections between story blocks in a file
called `story_blocks_connections.html`. (default:
False)
--num-threads NUM_THREADS
Maximum amount of threads to use when training.
(default: 1)
--fixed-model-name FIXED_MODEL_NAME
If set, the name of the model file/directory will be
set to the given name. (default: None)
--persist-nlu-data Persist the nlu training data in the saved model.
(default: False)
--force Force a model training even if the data has not
changed. (default: False)
Python Logging Options:
-v, --verbose Be verbose. Sets logging level to INFO. (default:
None)
-vv, --debug Print lots of debugging statements. Sets logging level
to DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
启动rasa的服务
usage: rasa run [-h] [-v] [-vv] [--quiet] [-m MODEL] [--log-file LOG_FILE]
[--endpoints ENDPOINTS] [-p PORT] [-t AUTH_TOKEN]
[--cors [CORS [CORS ...]]] [--enable-api]
[--response-timeout RESPONSE_TIMEOUT]
[--remote-storage REMOTE_STORAGE]
[--ssl-certificate SSL_CERTIFICATE]
[--ssl-keyfile SSL_KEYFILE] [--ssl-ca-file SSL_CA_FILE]
[--ssl-password SSL_PASSWORD] [--credentials CREDENTIALS]
[--connector CONNECTOR] [--jwt-secret JWT_SECRET]
[--jwt-method JWT_METHOD]
{actions} ... [model-as-positional-argument]
positional arguments:
{actions}
actions Runs the action server.
model-as-positional-argument
Path to a trained Rasa model. If a directory is
specified, it will use the latest model in this
directory. (default: None)
optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Path to a trained Rasa model. If a directory is
specified, it will use the latest model in this
directory. (default: models)
--log-file LOG_FILE Store logs in specified file. (default: None)
--endpoints ENDPOINTS
Configuration file for the model server and the
connectors as a yml file. (default: None)
Python Logging Options:
-v, --verbose Be verbose. Sets logging level to INFO. (default:
None)
-vv, --debug Print lots of debugging statements. Sets logging level
to DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
Server Settings:
-p PORT, --port PORT Port to run the server at. (default: 5005)
-t AUTH_TOKEN, --auth-token AUTH_TOKEN
Enable token based authentication. Requests need to
provide the token to be accepted. (default: None)
--cors [CORS [CORS ...]]
Enable CORS for the passed origin. Use * to whitelist
all origins. (default: None)
--enable-api Start the web server API in addition to the input
channel. (default: False)
--response-timeout RESPONSE_TIMEOUT
Maximum time a response can take to process (sec).
(default: 3600)
--remote-storage REMOTE_STORAGE
Set the remote location where your Rasa model is
stored, e.g. on AWS. (default: None)
--ssl-certificate SSL_CERTIFICATE
Set the SSL Certificate to create a TLS secured
server. (default: None)
--ssl-keyfile SSL_KEYFILE
Set the SSL Keyfile to create a TLS secured server.
(default: None)
--ssl-ca-file SSL_CA_FILE
If your SSL certificate needs to be verified, you can
specify the CA file using this parameter. (default:
None)
--ssl-password SSL_PASSWORD
If your ssl-keyfile is protected by a password, you
can specify it using this paramer. (default: None)
Channels:
--credentials CREDENTIALS
Authentication credentials for the connector as a yml
file. (default: None)
--connector CONNECTOR
Service to connect to. (default: None)
JWT Authentication:
--jwt-secret JWT_SECRET
Public key for asymmetric JWT methods or shared
secretfor symmetric methods. Please also make sure to
use --jwt-method to select the method of the
signature, otherwise this argument will be ignored.
(default: None)
--jwt-method JWT_METHOD
Method used for the signature of the JWT
authentication payload. (default: HS256)
https://rasa.com/docs/rasa/user-guide/command-line-interface/#id2