- LeetCode Top Interview 150 - Linked List
everecursion
leetcode算法职场和发展开源python数据结构
Alinkedlistisalineardatastructureconsistingofaseriesofnodes,whereeachnodecontainsdataandapointertothenextnode(inasinglylinkedlist)orbothpointerstothenextnodeandthepreviousnode(inadoublylinkedlist).The
- 线性回归:从基础到进阶的全面解析
tester Jeffky
大模型线性回归机器学习算法
线性回归:从基础到进阶的全面解析线性回归是机器学习中最基本的算法之一,广泛应用于预测和分析。本文将详细介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项。我们将通过丰富的代码示例来展示如何从头开始构建一个简单的线性回归模型,并逐步深入到更复杂的场景。1.线性回归的基本概念1.1什么是线性回归?线性回归是一种用于建模两个或多个变量之间关系的统计方法。它假设因变量(目标变量)与一个或
- 【经典必看】对数价格刻度 vs. 线性价格刻度:有什么区别?Logarithmic Price Scale vs. Linear Price Scale: What‘s the Difference?
精通代码大仙
投资数据挖掘python机器学习人工智能大数据深度学习自然语言处理
对数价格刻度vs.线性价格刻度:有什么区别?对数价格刻度vs.线性价格刻度:概览股票图表的解读可以根据查看数据时使用的不同价格刻度而有所不同。大多数在线和经纪商图表软件可以显示不同风格的图表。最常用的两种价格刻度用于分析价格变动:对数价格刻度—也称为“对数”—表示价格间距取决于基础资产价格的变化百分比。这通常是默认的图表样式。线性价格刻度—也称为“算术”—表示价格在Y轴上的间距是等距的。线性图表显
- 机器学习-期末测试
难以触及的高度
机器学习python人工智能
机器学习-期末测试线性回归1.代码展示#coding=UTF-8#拆分训练集和测试集importmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_split#是线性回归类是sklearn写好的根据梯度下降法fromsklearn.linear_modelimportLinearRegressionimportpand
- css‘s hover VS mobile
溪i
服务器运维
.animation{animation:30smoveinfinitelinear;/*&:hover{animation-play-state:paused;*/}原本写的好好的,测试说:“移动端点击滚动条,跳转到其他页面后,返回当前页面,滚动条不滚动;可以优化位点击后继续滚动”哎,改吧!setPause(true)}//onTouchEnd={()=>setPause(false)}onMo
- 通俗易懂之样条函数的原理、计算、案例、python实现
智识小站
可解释机器学习python算法
理解样条函数(SplineFunctions)是掌握广义加性模型(GAMs)及其他非线性回归技术的关键。样条函数通过分段多项式的形式,在不同区间内灵活地拟合数据,从而捕捉复杂的非线性关系。本文将更为详细地讲解样条函数的原理、具体示例以及在Python中的实现方法。如果这篇文章对你有一点点的帮助,欢迎点赞、关注、收藏、转发、评论哦!我也会在微信公众号“智识小站”坚持分享更多内容,以期记录成长、普及技
- 神经网络常见操作(卷积)输入输出
被放养的研究生
计算机视觉神经网络深度学习机器学习
卷积dim=d的tensor可以进行torch.nn.Convnd(in_channels,out_channels),其中n=d-1,d-2对于torch.nn.Convnd(in_channels,out_channels),改变的是tensor的倒数n+1维的大小全连接使用torch.nn.Linear(in_features,out_features,bias)实现Y=XWT+b,其中X的
- 机器学习和深度学习的概念
你好呀我是裤裤
深度学习笔记机器学习深度学习人工智能
MachineLearning机器学习,可以看作是找一个函数。这个函数是人类找不到的,所以交给机器来找。DifferenttypesofFunctions**Regression:**函数的输出是一个数值forexample:**Classification:**给出选项,让机器去选择。forexample:检测一个邮件是不是垃圾文件,就可以通过这个来做。选项是两个:垃圾文件or非垃圾文件。下面,
- 【人工智能】人工智能的10大算法详解(优缺点+实际案例)
ChatGPT-千鑫
人工智能人工智能算法gpt-3AI编程gptcodemoss能用AI
人工智能(AI)是现代科技的重要领域,其中的算法是实现智能的核心。本文将介绍10种常见的人工智能算法,包括它们的原理、训练方法、优缺点及适用场景。1.线性回归(LinearRegression)模型原理线性回归用于建立自变量(特征)与因变量(目标)之间的线性关系。其目标是寻找最佳拟合直线,使得预测值与实际值之间的误差最小化。模型训练通过最小二乘法来最小化预测值与真实值之间的误差,得到线性回归方程的
- jupyter notebook练手项目:线性回归——学习时间与成绩的关系
橙意满满的西瓜大侠
机器学习jupyter线性回归机器学习
线性回归——学习时间与学习成绩的关系第1步:导入工具库pandas——数据分析库,提供了数据结构(如DataFrame和Series)和数据操作方法,方便对数据集进行读取、清洗、转换等操作。matplotlib——绘图库,pyplot提供了一系列简单易用的绘图函数,用于创建各种类型的图表,如折线图、散点图、柱状图等。%matplotlibinline——使matplotlib绘制的图像嵌入在Jup
- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- Python实现简单的机器学习算法
master_chenchengg
pythonpython办公效率python开发IT
Python实现简单的机器学习算法开篇:初探机器学习的奇妙之旅搭建环境:一切从安装开始必备工具箱第一步:安装Anaconda和JupyterNotebook小贴士:如何配置Python环境变量算法初体验:从零开始的Python机器学习线性回归:让数据说话数据准备:从哪里找数据编码实战:Python实现线性回归模型评估:如何判断模型好坏逻辑回归:从分类开始理论入门:什么是逻辑回归代码实现:使用skl
- 七.正则化
愿风去了
吴恩达机器学习之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net/b876144622/article/details/81276818虽然在线性回归中加入基函数会使模型更加灵活,但是很容易引起数据的过拟合。例如将数据投影到30维的基函数上,模
- Pyorch中 nn.Conv1d 与 nn.Linear 的区别
迪三
#NN_Layer神经网络
即一维卷积层和全联接层的区别nn.Conv1d和nn.Linear都是PyTorch中的层,它们用于不同的目的,主要区别在于它们处理输入数据的方式和执行的操作类型。nn.Conv1d通过应用滑动过滤器来捕捉序列数据中的局部模式,适用于处理具有时间或序列结构的数据。nn.Linear通过将每个输入与每个输出相连接,捕捉全局关系,适用于将输入数据作为整体处理的任务。1.维度与输入nn.Conv1d(一
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- 关于Echarts的一些设置总结
夏之小星星
echarts前端javascript
最近领导让我一个偏后端程序员画各种数据展示echarts页面,遇到好多问题在此记录一下,未完待续。。。ps:不喜欢画页面啊啊啊啊啊,以前公司这些都是ui的活啊啊啊啊,折磨死我啦啊啊啊啊一、柱形图1、echarts如何设置柱形颜色渐变在option加color属性option={color:{type:'linear',//x=0,y=1,柱子的颜色在垂直方向渐变x:0,y:1,colorStops
- 12312312
二进制掌控者
c++
c语言中的小小白-CSDN博客c语言中的小小白关注算法,c++,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm=1001.2014.3001.5343给大家分享一句我很喜欢我话:知不足而奋进,望远山而前行!!!铁铁们,成功的路上必然是孤独且艰难的,但是我们不可以放弃,远山就在前方,但我们
- 你知道什么是回调函数吗?
二进制掌控者
#C语言专栏c语言开发语言
c语言中的小小白-CSDN博客c语言中的小小白关注算法,c++,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm=1001.2014.3001.5343给大家分享一句我很喜欢我话:知不足而奋进,望远山而前行!!!铁铁们,成功的路上必然是孤独且艰难的,但是我们不可以放弃,远山就在前方,但我们
- python数学建模--非线性规划
diudiu_aaa
数学建模python算法
1.从线性规划到非线性规划本系列的开篇我们介绍了线性规划(LinearProgramming)并延伸到整数规划、0-1规划,以及相对复杂的固定费用问题、选址问题。这些问题的共同特点是,目标函数与约束条件都是线性函数。如果目标函数或约束条件中包含非线性函数,则是非线性规划。通常,非线性问题都比线性问题复杂得多,困难得多,非线性规划也是这样。非线性规划没有统一的通用方法、算法来解决,各种方法都有特定的
- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- 当背景为两种颜色交替出现时?用重复性渐变实现
痛心凉
重复性渐变cssdiv{background-image:linear-gradient(0deg,rgba(255,255,255,.2)50%,transparent50%,transparent);background-size:37px37px;background-color:#EBEBEB;//按需要改动背景色}
- 百行代码复现扩散模型-基于线性回归
李新然
数据统计分析深度学习线性回归算法回归python数据分析
文章目录引言简化模型原本模型模型改造实现过程数据集文本编码图像编码解码扩散过程训练过程生成过程完整实现结论引言多模态的深度学习模型,通常需要大量的算力去训练和验证。这导致缺乏算力的普通读者,阅读“大模型”论文,只能按论文作者所写来构造自己的认知。可能对很多类似笔者的人来说:纸上得来终觉浅。或许我们可以退而求其次,只选择Follow论文的思路。本文以DiffusionModel为例,说明从核心思想来
- 【机器学习】广义线性模型(GLM)的基本概念以及广义线性模型在python中的实例(包含statsmodels和scikit-learn实现逻辑回归)
Lossya
机器学习pythonscikit-learn线性回归人工智能逻辑回归
引言GLM扩展了传统的线性回归模型,使其能够处理更复杂的数据类型和分布文章目录引言一、广义线性模型1.1定义1.2广义线性模型的组成1.2.1响应变量(ResponseVariable)1.2.2链接函数(LinkFunction)1.2.3线性预测器(LinearPredictor)1.3常见的广义线性模型1.3.1线性回归1.3.2逻辑回归1.3.3泊松回归1.4GLM的特性1.5广义线性模型
- 每天五分钟玩转深度学习框架PyTorch:获取神经网络模型的参数
幻风_huanfeng
深度学习框架pytorch深度学习pytorch神经网络人工智能模型参数python
本文重点当我们定义好神经网络之后,这个网络是由多个网络层构成的,每层都有参数,我们如何才能获取到这些参数呢?我们将再下面介绍几个方法来获取神经网络的模型参数,此文我们是为了学习第6步(优化器)。获取所有参数Parametersfromtorchimportnnnet=nn.Sequential(nn.Linear(4,2),nn.Linear(2,2))print(list(net.paramet
- 每天五分钟玩转深度学习框架PyTorch:将nn的神经网络层连接起来
幻风_huanfeng
深度学习框架pytorch深度学习pytorch神经网络人工智能机器学习python
本文重点前面我们学习pytorch中已经封装好的神经网络层,有全连接层,激活层,卷积层等等,我们可以直接使用。如代码所示我们直接使用了两个nn.Linear(),这两个linear之间并没有组合在一起,所以forward的之后,分别调用了,在实际使用中我们常常将几个神经层组合在一起,这样不仅操作方便,而且代码清晰。这里介绍一下Sequential()和ModuleList(),它们可以将多个神经网
- ColumnParallelLinear 和 RowParallelLinear
道真人
算法人工智能
ColumnParallelLinear和RowParallelLinear是两种并行线性层,它们的主要区别在于权重矩阵的分割方式和计算过程。具体来说:ColumnParallelLinear权重矩阵分割方式:权重矩阵W被按列(column)分割成多个子矩阵,每个子矩阵在并行设备上进行计算。如果权重矩阵W的形状是(output_dim,input_dim),它会被分割成P个子矩阵,每个子矩阵的形状
- 惩罚线性回归模型
媛苏苏
算法/模型/函数线性回归算法回归
惩罚线性回归模型是一种常见的线性回归的变体,它在原始的线性回归模型中引入了一种惩罚项,以防止模型过拟合数据。在惩罚线性回归中,除了最小化预测值与实际值之间的平方误差(或其他损失函数)外,还会考虑模型参数的大小。惩罚项通常被加到模型的损失函数中,以限制模型参数的大小。这样做有助于减少模型对训练数据的过度拟合,提高模型的泛化能力。常见的惩罚线性回归模型包括:岭回归(RidgeRegression):岭
- L2正则线性回归(岭回归)
一壶浊酒..
深度学习回归线性回归
岭回归数据的特征比样本点还多,非满秩矩阵在求逆时会出现问题岭回归即我们所说的L2正则线性回归,在一般的线性回归最小化均方误差的基础上增加了一个参数w的L2范数的罚项,从而最小化罚项残差平方和简单说来,岭回归就是在普通线性回归的基础上引入单位矩阵。回归系数的计算公式变形如下岭回归最先用来处理特征数多于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计。这里通过引入λ来限制了所有w之和,通过
- 通俗理解线性回归(Linear Regression)
小夏refresh
机器学习数据挖掘机器学习算法人工智能数据挖掘
线性回归,最简单的机器学习算法,当你看完这篇文章,你就会发现,线性回归是多么的简单.首先,什么是线性回归.简单的说,就是在坐标系中有很多点,线性回归的目的就是找到一条线使得这些点都在这条直线上或者直线的周围,这就是线性回归(LinearRegression).是不是有画面感了?那么我们上图片:![1.png][1]那么接下来,就让我们来看看具体的线性回归吧首先,我们以二维数据为例:我们有一组数据x
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name