Hive实战

实战一:创建表

数据集:movies.csv

用,隔开,三列数据分别表示movie_id,movie_name,genres(电影id,电影名字,电影风格)

Hive实战_第1张图片

数据集:rating.csv

用,隔开,四列数据分别表示user_id,movie_id,rating,timestamp

 

1.在hive根目录下命令行输入hive

Hive实战_第2张图片

2.shell创建表

HDFS创建目录:/hive/rating_table     和  /hive/movie_table  

将数据集movie.csv上传到/hive/movie_table  

将数据集rating.csv上传到/hive/rating_table

在终端输入以下sql语句:

create external table movie_table
(
movieId STRING,
title STRING,
genres STRING
)
row format delimited fields terminated by ','
stored as textfile
location '/hive/movie_table';

然后在另一个终端执行:

hive -f create_rating_table;

 

3.查询是否已经见表

hive> show tables;

4.查看表的描述

hive> desc movie_table;
OK
movieid                 string                                      
title                   string                                      
genres                  string                                      
Time taken: 0.134 seconds, Fetched: 3 row(s)

5.查询表的内容

hive> select * from movie_table limit 10;
OK
movieId title   genres
1       Toy Story (1995)        Adventure|Animation|Children|Comedy|Fantasy
2       Jumanji (1995)  Adventure|Children|Fantasy
3       Grumpier Old Men (1995) Comedy|Romance
4       Waiting to Exhale (1995)        Comedy|Drama|Romance
5       Father of the Bride Part II (1995)      Comedy
6       Heat (1995)     Action|Crime|Thriller
7       Sabrina (1995)  Comedy|Romance
8       Tom and Huck (1995)     Adventure|Children
9       Sudden Death (1995)     Action
Time taken: 0.145 seconds, Fetched: 10 row(s)

 

 

实战二:两张表的join

设置b为小表

select /* +MAPJOIN(b)*/ b.userid, a.title, b.rating
from movie_table a
join rating_table b
where a.movieid == b.movieid
limit 10;

wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

实战四:两表join的结果存到一个新表中

create table behavior_table as
select /* +MAPJOIN(b)*/ b.userid, a.title, b.rating
from movie_table a
join rating_table b
on a.movieid == b.movieid
limit 10;

对应表的数据位置:/user/hive/warehouse/behavior_table

默认分隔符:^A:hadoop fs -text  /user/hive/warehouse/behavior_table/000000_0| awk  -F'^A' '{print $1}'

behavior_table为内表,删除之后数据也随之丢失

hive> drop table behavior_table;

检验:hadoop fs -ls /user/hive/warehouse  查看此目录下为空

实战五:数据导出(本地、HDFS)

本地:1.txt文件夹是程序创建,无需手动创建

hive> insert overwrite local directory '/usr/local/src/test2/09.Hive/1.txt' 
hive> select userid, title from behavior_table;

查看数据:cat  /usr/local/src/test2/09.Hive/1.txt/00000-0

HDFS:/behavior_table文件夹是程序创建,无需手动创建

hive> insert overwrite directory '/behavior_table' 
hive> select  userid, title from behavior_table;

查看数据:hadoop fs -text  /behavior_table/000000-0 | head

 

事件六:时间戳转换

数据集:ratings.csv、convert_ts.py

python文件

import sys
import time
file_name = sys.argv[1]

with open(file_name, 'r') as fd:
    for line in fd:
        ss = line.strip().split(',')
        if len(ss) == 4:
            user_id = ss[0].strip()
            movie_id = ss[1].strip()
            rating = ss[2].strip()
            timestamp = ss[3].strip()
            time_local = time.localtime(long(timestamp))
            dt = time.strftime("%Y-%m", time_local)
            print '\t'.join([user_id, movie_id, rating, dt])

命令行输入:

python convert_ts.py ratings.csv > ratings.csv.format

Hive实战_第3张图片

查看不重复的项有多少个

cat ratings.csv.format | awk -F\\t "{print $NF}" | sort | uniq | wc -l    

 

实践七:创建partition表

create_rating_table_p.sql

create external table rating_table_p
(userId STRING,
movieId STRING,
rating STRING
)
partitioned by (dt STRING)
row format delimited fields terminated by '\t'
lines terminated by '\n';
hive -f create_rating_table_p.sql

查看:

hive> desc rating_table_p;
OK
userid                  string                                      
movieid                 string                                      
rating                  string                                      
dt                      string                                      
                 
# Partition Information          
# col_name              data_type               comment             
                 
dt                      string                                      
Time taken: 0.099 seconds, Fetched: 9 row(s)

把2008年8月的数据集中到一个文件中

cat ratings.csv.format | grep "2008-08" > 2008-08.data
cat ratings.csv.format | grep "2008-03" > 2008-03.data

往表中插数据

hive> load data local inpath '/usr/test2/09.Hive/hive_test_7/01/2008-08.data' 
hive> overwrite into table rating_table_p partition(dt='2008-08');

同样再插入2008-03的数据

 

查看分区:

hive> show partitions rating_table_p;

查看数据:

hive> select * from rating_table_p where dt = '2008-08' limit 10;
OK
68      260     3.0     2008-08
68      318     4.0     2008-08
68      367     3.0     2008-08
68      457     4.0     2008-08
68      480     4.0     2008-08
68      539     3.5     2008-08
68      586     3.5     2008-08
68      914     4.0     2008-08
68      1035    4.0     2008-08
68      1951    4.0     2008-08

查看HDFS目录:

[root@master convert_time]# hadoop fs -ls /user/hive/warehouse/rating_table_p
Found 2 items
drwxr-xr-x   - root supergroup          0 2019-05-26 13:01 /user/hive/warehouse/rating_table_p/dt=2008-03
drwxr-xr-x   - root supergroup          0 2019-05-26 13:00 /user/hive/warehouse/rating_table_p/dt=2008-08

一个分区对应着HDFS上的一个文件夹

你可能感兴趣的:(Hive)