Flink流计算引擎

 

伴随着海量增长的数据,数字化时代的未来感扑面而至。不论是结绳记事的小数据时代,还是我们正在经历的大数据时代,计算的边界正在被无限拓宽,而数据的价值再也难以被计算。时下,谈及大数据,不得不提到热门的下一代大数据计算引擎Apache Flink(以下简称Flink)。

统一的批处理与流处理系统

在大数据处理领域,批处理任务与流处理任务一般被认为是两种不同的任务,一个大数据项目一般会被设计为只能处理其中一种任务,例如Apache Storm、Apache Smaza只支持流处理任务,而Aapche MapReduce、Apache Tez、Apache Spark只支持批处理任务。Spark Streaming是Apache Spark之上支持流处理任务的子系统,看似一个特例,实则不然——Spark Streaming采用了一种micro-batch的架构,即把输入的数据流切分成细粒度的batch,并为每一个batch数据提交一个批处理的Spark任务,所以Spark Streaming本质上还是基于Spark批处理系统对流式数据进行处理,和Apache Storm、Apache Smaza等完全流式的数据处理方式完全不同。目前同时支持流处理和批处理的计算引擎,只有两种选择:一个是Apache Spark,一个是Apache Flink。通过其灵活的执行引擎,Flink能够同时支持批处理任务与流处理任务。

 

在执行引擎这一层,流处理系统与批处理系统最大不同在于节点间的数据传输方式。对于一个流处理系统,其节点间数据传输的标准模型是:当一条数据被处理完成后,序列化到缓存中,然后立刻通过网络传输到下一个节点,由下一个节点继续处理。而对于一个批处理系统,其节点间数据传输的标准模型是:当一条数据被处理完成后,序列化到缓存中,并不会立刻通过网络传输到下一个节点,当缓存写满,就持久化到本地硬盘上,当所有数据都被处理完成后,才开始将处理后的数据通过网络传输到下一个节点。这两种数据传输模式是两个极端,对应的是流处理系统对低延迟的要求和批处理系统对高吞吐量的要求。Flink的执行引擎采用了一种十分灵活的方式,同时支持了这两种数据传输模型。Flink以固定的缓存块为单位进行网络数据传输,用户可以通过缓存块超时值指定缓存块的传输时机。如果缓存块的超时值为0,则Flink的数据传输方式类似上文所提到流处理系统的标准模型,此时系统可以获得最低的处理延迟。如果缓存块的超时值为无限大,则Flink的数据传输方式类似上文所提到批处理系统的标准模型,此时系统可以获得最高的吞吐量。同时缓存块的超时值也可以设置为0到无限大之间的任意值。缓存块的超时阈值越小,则Flink流处理执行引擎的数据处理延迟越低,但吞吐量也会降低,反之亦然。通过调整缓存块的超时阈值,用户可根据需求灵活地权衡系统延迟和吞吐量。下图为Flink执行引擎数据传输模式:

Flink流计算引擎_第1张图片

 

在统一的流式执行引擎基础上,Flink同时支持了流计算和批处理,并对性能(延迟、吞吐量等)有所保障。相对于其他原生的流处理与批处理系统,并没有因为统一执行引擎而受到影响从而大幅度减轻了用户安装、部署、监控、维护等成本。

 

 

Flink的技术栈

Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等功能。基于流执行引擎,Flink提供了诸多更高抽象层的API以便用户编写分布式任务:

  1. DataSet API,对静态数据进行批处理操作,将静态数据抽象成分布式的数据集,用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理,支持Java、Scala和Python。
  2. DataStream API,对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户可以方便地对分布式数据流进行各种操作,支持Java和Scala。
  3. Table API,对结构化数据进行查询操作,将结构化数据抽象成关系表,并通过类SQL的DSL对关系表进行各种查询操作,支持Java和Scala。

此外,Flink还针对特定的应用领域提供了领域库,例如Flink ML,Flink的机器学习库,提供了机器学习Pipelines API并实现了多种机器学习算法;还有Gelly,Flink的图计算库,提供了图计算的相关API及多种图计算算法实现。

另外,Flink也可以方便地和Hadoop生态圈中其他项目集成,例如Flink可以读取存储在HDFS或HBase中的静态数据,以Kafka作为流式的数据源,直接重用MapReduce或Storm代码,或是通过YARN申请集群资源等。Flink的技术栈如下所示:

Flink流计算引擎_第2张图片

 

 

Flink的状态管理

Flink最区别于其他流计算引擎的,其实就是状态管理。什么是状态?例如开发一套流计算的系统或者任务做数据处理,可能经常要对数据进行统计,如Sum,Count,Min,Max,这些值是需要存储的。因为要不断更新,这些值或者变量就可以理解为一种状态。如果数据源是在读取Kafka,RocketMQ,可能要记录读取到什么位置,并记录Offset,这些Offset变量都是要计算的状态。

Flink提供了内置的状态管理,可以把这些状态存储在Flink内部,而不需要把它存储在外部系统。这样做的好处是第一降低了计算引擎对外部系统的依赖以及部署,使运维更加简单;第二,对性能带来了极大的提升:如果通过外部去访问,如Redis,HBase它一定是通过网络及RPC。如果通过Flink内部去访问,它只通过自身的进程去访问这些变量。同时Flink会定期将这些状态做Checkpoint持久化,把Checkpoint存储到一个分布式的持久化系统中,比如HDFS。这样的话,当Flink的任务出现任何故障时,它都会从最近的一次Checkpoint将整个流的状态进行恢复,然后继续运行它的流处理。对用户没有任何数据上的影响。

那么Flink是如何做到在Checkpoint恢复过程中没有任何数据的丢失和数据的冗余?来保证精准计算的?这其中原因是Flink利用了一套非常经典的Chandy-Lamport算法,它的核心思想是把这个流计算看成一个流式的拓扑,定期从这个拓扑的头部Source点开始插入特殊的Barries,从上游开始不断的向下游广播这个Barries。每一个节点收到所有的Barries,会将State做一次Snapshot,当每个节点都做完Snapshot之后,整个拓扑就算完整的做完了一次Checkpoint。接下来不管出现任何故障,都会从最近的Checkpoint进行恢复。Flink利用这套经典的算法,保证了强一致性的语义。这也是Flink与其他无状态流计算引擎的核心区别。

你可能感兴趣的:(Flink流计算引擎)