CPU(中央处理器)和GPU(图像处理器)区别

GPU是显卡的处理器,称为图形处理器(Graphics Processing Unit,即GPU),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器,它是显卡的“心脏”,与CPU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。 

CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境

于是CPU和GPU就呈现出非常不同的架构(示意图)

CPU(中央处理器)和GPU(图像处理器)区别_第1张图片

图片来自nVidia CUDA文档。其中绿色的是计算单元,橙红色的是存储单元,橙黄色的是控制单元。

GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache。而CPU不仅被Cache占据了大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分。   所以与CPU擅长逻辑控制和通用类型数据运算不同,GPU擅长的是大规模并发计算,这也正是密码破解等所需要的。所以GPU除了图像处理,也越来越多的参与到计算当中来。

想要理解GPU与CPU的区别,需要先明白GPU被设计用来做什么。现代的GPU功能涵盖了图形显示的方方面面,我们只取一个最简单的方向作为例子。

GPU的工作大部分就是这样,计算量大,但没什么技术含量,而且要重复很多很多次。就像你有个工作需要算几亿次一百以内加减乘除一样,最好的办法就是雇上几十个小学生一起算,一人算一部分,反正这些计算也没什么技术含量,纯粹体力活而已。而CPU就像老教授,积分微分都会算,就是工资高,一个老教授资顶二十个小学生,你要是富士康你雇哪个?GPU就是这样,用很多简单的计算单元去完成大量的计算任务,纯粹的人海战术。这种策略基于一个前提,就是小学生A和小学生B的工作没有什么依赖性,是互相独立的。很多涉及到大量计算的问题基本都有这种特性,比如你说的破解密码,挖矿和很多图形学的计算。这些计算可以分解为多个相同的简单小任务,每个任务就可以分给一个小学生去做。但还有一些任务涉及到“流”的问题。比如你去相亲,双方看着顺眼才能继续发展。总不能你这边还没见面呢,那边找人把证都给领了。这种比较复杂的问题都是CPU来做的。  

总而言之,CPU和GPU因为最初用来处理的任务就不同,所以设计上有不小的区别。而某些任务和GPU最初用来解决的问题比较相似,所以用GPU来算了。GPU的运算速度取决于雇了多少小学生,CPU的运算速度取决于请了多么厉害的教授。教授处理复杂任务的能力是碾压小学生的,但是对于没那么复杂的任务,还是顶不住人多。当然现在的GPU也能做一些稍微复杂的工作了,相当于升级成初中生高中生的水平。但还需要CPU来把数据喂到嘴边才能开始干活,究竟还是靠CPU来管的。  

3、就目前的计算机架构,GPU只能称作是小众。GPU作为后来者,出现的太晚了,计算机架构已经定型,不太可能撼动 Intel 的霸主地位,而且Intel 一定会借着先天优势打压其他竞争对手。 最近bitcoin被媒体炒作的太过了,出现在了公众的视野中。媒体写新闻的那群人只要是写点和技术沾边的文章,就能暴露他们的无知,倒霉的还是无辜的群众。   

笔者简单提一下为什么GPU只能算作是小众。在计算机上运行的程序从性能的角度来说大致可分为三类:(1) I/O intensive; (2) Memory intensive 以及 (3) Compute-intensive。

(1)I/O intensive的程序其性能瓶颈是I/O,也就是说程序运行的大部分时间花在了硬盘读写/网络通信上,而I/O处在计算机体系结构金字塔的最底层,速度非常慢。最近炒的很火的big data 讨论的就是这一类应用程序。几百TB 甚至到PB级别的数据往哪搁,只能放在硬盘上。一台机器容量太小CPU太少怎么办,搞几百台甚至上千台机器用网线连起来分布处理。所以这块全是I/O, 现在大的互联网公司不多搞几个上千节点的集群肯定撑不住。   

(2)Memory intensive的程序其性能瓶颈在内存访问,程序中有大量的随机访问内存的操作,但是基本没有I/O, 这类程序已经比第一类程序快一个数量级了,但是和寄存器的速度还是没法比。目前大部分应用程序都属于这类。个人电脑里装的的各种软件基本就是这类,如果有点I/O, 立刻就会非常得卡。 以上提到的这两类程序的应用最广泛,涵盖了大部分有用的计算机软件,但遗憾的是GPU在这两块毫无用处, GPU只有在计算密集型的程序有些作用。I/O是瓶颈的程序,花在计算的时间可以忽略不计,再怎么用GPU加速也没用。 含有大量内存随机访问的程序也不适合在GPU上执行,大量的随机访问甚至可以使GPU的行为由并行变为串行。   

什么类型的程序适合在GPU上运行?   

(1)计算密集型的程序。所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD, 也实在是太慢了。   

(2)易于并行的程序。GPU其实是一种SIMD(Single Instruction Multiple Data)架构, 他有成百上千个核,每一个核在同一时间最好能做同样的事情。   

满足以上两点,就可以用GPU做运算了。 不过你还得先用CUDA或者Open CL 把能在GPU上运行的程序写出来, 这也是很麻烦的,写一下就知道了。 而且GPU的架构比较特殊,要想写出高效率的程序,要花很多很多时间。笔者想说写GPU程序是一件很蛋疼的事情。 

参考原文:https://blog.csdn.net/qq_27022241/article/details/78293946

你可能感兴趣的:(操作系统)