第三期 利用已经训练的神经网络进行图像识别 《显卡就是开发板》

  本着更好的演示的态度,在进行改造或者训练神经网络之前,我们先来感受一下已经训练好的神经网络是什么样子的,这一期使用Tensorflow的Tutorials里面的 Image Recognition 的案例来将 使用 ImageNet 中提供的1000种分类的数据训练出来的InceptionV3模型的神经网络来做一个小小的演示。
  这个演示非常简单,首先使用搜索引擎下载一个常见物种的图片,比如我通过goolge搜索‘wolf’ 然后随便下载一张图片并保存为 demo.jpg ,然后在图片同目录下打开 Jupyter notebook ,新建一个notebook ,然后粘贴下面的代码,Ctrl + Enter 运行。
  下面的代码是通过这个链接里的代码改造而来的:
https://github.com/tensorflow/models/blob/master/tutorials/image/imagenet/classify_image.py

%matplotlib inline

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os.path
import re
import sys
import tarfile

import numpy as np
from six.moves import urllib
import tensorflow as tf
from PIL import Image  
from matplotlib import pyplot as plt  

FLAGS = None
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
model_dir = './inception'

class NodeLookup(object):
  """Converts integer node ID's to human readable labels."""

  def __init__(self,
               label_lookup_path=None,
               uid_lookup_path=None):
    if not label_lookup_path:
      label_lookup_path = os.path.join(
          model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
    if not uid_lookup_path:
      uid_lookup_path = os.path.join(
          model_dir, 'imagenet_synset_to_human_label_map.txt')
    self.node_lookup = self.load(label_lookup_path, uid_lookup_path)

  def load(self, label_lookup_path, uid_lookup_path):
    if not tf.gfile.Exists(uid_lookup_path):
      tf.logging.fatal('File does not exist %s', uid_lookup_path)
    if not tf.gfile.Exists(label_lookup_path):
      tf.logging.fatal('File does not exist %s', label_lookup_path)

    # Loads mapping from string UID to human-readable string
    proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
    uid_to_human = {}
    p = re.compile(r'[n\d]*[ \S,]*')
    for line in proto_as_ascii_lines:
      parsed_items = p.findall(line)
      uid = parsed_items[0]
      human_string = parsed_items[2]
      uid_to_human[uid] = human_string

    # Loads mapping from string UID to integer node ID.
    node_id_to_uid = {}
    proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
    for line in proto_as_ascii:
      if line.startswith('  target_class:'):
        target_class = int(line.split(': ')[1])
      if line.startswith('  target_class_string:'):
        target_class_string = line.split(': ')[1]
        node_id_to_uid[target_class] = target_class_string[1:-2]

    # Loads the final mapping of integer node ID to human-readable string
    node_id_to_name = {}
    for key, val in node_id_to_uid.items():
      if val not in uid_to_human:
        tf.logging.fatal('Failed to locate: %s', val)
      name = uid_to_human[val]
      node_id_to_name[key] = name

    return node_id_to_name

  def id_to_string(self, node_id):
    if node_id not in self.node_lookup:
      return ''
    return self.node_lookup[node_id]

def create_graph():
  """Creates a graph from saved GraphDef file and returns a saver."""
  # Creates graph from saved graph_def.pb.
  with tf.gfile.FastGFile(os.path.join(
      model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    _ = tf.import_graph_def(graph_def, name='')

def run_inference_on_image(image):
  if not tf.gfile.Exists(image):
    tf.logging.fatal('File does not exist %s', image)
  image_data = tf.gfile.FastGFile(image, 'rb').read()

  # Creates graph from saved GraphDef.
  create_graph()

  with tf.Session() as sess:
    softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
    predictions = sess.run(softmax_tensor,
                           {'DecodeJpeg/contents:0': image_data})
    predictions = np.squeeze(predictions)

    # Creates node ID --> English string lookup.
    node_lookup = NodeLookup()

    top_k = predictions.argsort()[-1:][::-1]
    for node_id in top_k:
      human_string = node_lookup.id_to_string(node_id)
      score = predictions[node_id]
      print('%s (score = %.5f)' % (human_string, score))

    img = Image.open(image)   
    fig = plt.figure()  
    ax = fig.add_subplot(111) 
    ax.set_title(label=human_string, fontdict={'fontsize': 36})
    ax.imshow(img) 

def maybe_download_and_extract():
  """Download and extract model tar file."""
  dest_directory = model_dir
  if not os.path.exists(dest_directory):
    os.makedirs(dest_directory)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(dest_directory, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (
          filename, float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(dest_directory)

def main(_):
  maybe_download_and_extract()
  image = (os.path.join('demo.jpg'))
  run_inference_on_image(image)

tf.app.run(main=main)

运行结果会以图片的方式显示出来,并且将图片的分类作为标题,如下图所示,这个神经网络将 wolf 准确的识别出来。

第三期 利用已经训练的神经网络进行图像识别 《显卡就是开发板》_第1张图片

  到此,我们这次演示就结束了,是不是很直观,可以多换几个物种来验证一下这个网络的准确性。

参考文档:
[1] https://www.tensorflow.org/tutorials/image_recognition

备注: 请在科学的网络环境下进行本次实验

你可能感兴趣的:(显卡就是开发板)