一、Mysql数据库优化技术
对mysql优化时一个综合性的技术,主要包括
1: 表的设计合理化(符合3NF)
2: 添加适当索引(index) [四种: 普通索引、主键索引、唯一索引unique、全文索引]
3: 分表技术(水平分割、垂直分割)
4: 读写[写: update/delete/add]分离
5: 存储过程 [模块化编程,可以提高速度]
6: 对mysql配置优化 [配置最大并发数my.ini, 调整缓存大小 ]
7: mysql服务器硬件升级
8: 定时的去清除不需要的数据,定时进行碎片整理(MyISAM)
二、sql优化
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like ‘%abc%’
7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=‘abc’–name以abc开头的id
应改为:
select id from t where name like ‘abc%’
9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,
否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
11.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)
12.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
13.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,
如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
14.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,
因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。
一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
15.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。
这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
16.尽可能的使用 varchar 代替 char ,因为首先变长字段存储空间小,可以节省存储空间,
其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
17.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
18.避免频繁创建和删除临时表,以减少系统表资源的消耗。
19.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
20.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,
以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
21.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
22.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
23.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
24.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。
在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
25.尽量避免大事务操作,提高系统并发能力。
26.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
三、Mysql如何做高可用
第一种:主从复制+读写分离
客户端通过Master对数据库进行写操作,slave端进行读操作,并可进行备份。Master出现问题后,可以手动将应用切换到slave端。
特点:对于数据实时性要求不是特别严格的应用,只需要通过廉价的pc server来扩展Slave的数量,将读压力分散到多台Slave的机器上面,即可通过分散单台数据库服务器的读压力来解决数据库端的读性能瓶颈,毕竟在大多数数据库应用系统中的读压力要比写压力大的多。这在很大程度上解决了目前很多中小型网站的数据库压力瓶颈问题,甚至有些大型网站也在使用类似的方案解决数据库瓶颈问题。
第二种:Mysql Cluster(使用人数较少)
MySQL Cluster 由一组计算机构成,每台计算机上均运行着多种进程,包括 MySQL 服务器,NDB Cluster的数据节点,管理服务器,以及(可能)专门的数据访问程序。
由于MySQL Cluster架构复杂,部署费时(通常需要DBA几个小时的时间才能完成搭建),而依靠 MySQL Cluster Manager 只需一个命令即可完成,但 MySQL Cluster Manager 是收费的。并且业内资深人士认为NDB 不适合大多数业务场景,而且有安全问题。因此,使用的人数较少。
第三种:Heartbeat+双主从复制
heartbeat 是 Linux-HA 工程的一个组件,heartbeat 最核心的包括两个部分:心跳监测和资源接管。在指定的时间内未收到对方发送的报文,那么就认为对方失效,这时需启动资源接管模块来接管运 行在对方主机上的资源或者服务。
第四种:HeartBeat+DRBD+Mysql
DRBD 是通过网络来实现块设备的数据镜像同步的一款开源 Cluster 软件,它自动完成网络中两个不同服务器上的磁盘同步,相对于 binlog 日志同步,它是更底层的磁盘同步,理论上 DRDB 适合很多文件型系统的高可用。
第五种:Lvs+keepalived+双主复制
Lvs 是一个虚拟的服务器集群系统,可以实现 LINUX 平台下的简单负载均衡。keepalived 是一个类似于layer3, 4 & 5 交换机制的软件,主要用于主机与备机的故障转移,这是一种适用面很广的负载均衡和高可用方案,最常用于 Web 系统。
第六种:MariaDB Galera
MariaDB Galera Cluster 是一套在mysql innodb存储引擎上面实现multi-master及数据实时同步的系统架构,业务层面无需做读写分离工作,数据库读写压力都能按照既定的规则分发到 各个节点上去。在数据方面完全兼容 MariaDB 和 MySQL。
该架构主要有以下几种特性:
(1).同步复制 Synchronous replication
(2).Active-active multi-master 拓扑逻辑
(3).可对集群中任一节点进行数据读写
(4).自动成员控制,故障节点自动从集群中移除
(5).自动节点加入
(6).真正并行的复制,基于行级
(7).直接客户端连接,原生的 MySQL 接口
(8).每个节点都包含完整的数据副本
(9).多台数据库中数据同步由 wsrep 接口实现
其局限性体现在以下几点:
(1).目前的复制仅仅支持InnoDB存储引擎,任何写入其他引擎的表,包括mysql.*表将不会复制,但是DDL语句会被复制的,因此创建用户将会被复制,但是insert into mysql.user…将不会被复制的.
(2).DELETE操作不支持没有主键的表,没有主键的表在不同的节点顺序将不同,如果执行SELECT…LIMIT… 将出现不同的结果集.
(3).在多主环境下LOCK/UNLOCK TABLES不支持,以及锁函数GET_LOCK(), RELEASE_LOCK()…
(4).查询日志不能保存在表中。如果开启查询日志,只能保存到文件中。
(5).允许最大的事务大小由wsrep_max_ws_rows和wsrep_max_ws_size定义。任何大型操作将被拒绝。如大型的LOAD DATA操作。
(6).由于集群是乐观的并发控制,事务commit可能在该阶段中止。如果有两个事务向在集群中不同的节点向同一行写入并提交,失败的节点将中止。对 于集群级别的中止,集群返回死锁错误代码(Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)).
(7).XA事务不支持,由于在提交上可能回滚。
(8).整个集群的写入吞吐量是由最弱的节点限制,如果有一个节点变得缓慢,那么整个集群将是缓慢的。为了稳定的高性能要求,所有的节点应使用统一的硬件。
(9).集群节点建议最少3个。
(10).如果DDL语句有问题将破坏集群。
四、存储原理
1、Mysql常见引擎
(1)InnoDB
InnoDB 的存储文件有两个,后缀名分别是 .frm 和 .idb,其中 .frm 是表的定义文件,而 idb 是数据文件。
InnoDB 中存在表锁和行锁,不过行锁是在命中索引的情况下才会起作用。
InnoDB 支持事务,且支持四种隔离级别(读未提交、读已提交、可重复读、串行化),默认的为可重复读;而在 Oracle 数据库中,只支持串行化级别和读已提交这两种级别,其中默认的为读已提交级别。
(2)Myisam
Myisam 的存储文件有三个,后缀名分别是 .frm、.MYD、MYI,其中 .frm 是表的定义文件,.MYD 是数据文件,.MYI 是索引文件。
Myisam 只支持表锁,且不支持事务。Myisam 由于有单独的索引文件,在读取数据方面的性能很高 。
(3)存储结构
InnoDB 和 Myisam 都是用 B+Tree 来存储数据的。
五、Mysql数据库隔离级别
1、数据库事务隔离级别
数据库事务的隔离级别有4个,由低到高依次为Read uncommitted 、Read committed 、Repeatable read 、Serializable ,这四个级别可以逐个解决脏读 、不可重复读 、幻读 这几类问题。
(1)Read uncommitted 读未提交
当隔离级别设置为Read uncommitted 时,就可能出现脏读
(2)Read committed 读提交
当隔离级别设置为Read committed 时,避免了脏读,但是可能会造成不可重复读。
大多数数据库的默认级别就是Read committed,比如Sql Server , Oracle。
(3)Repeatable read 重复读
虽然Repeatable read避免了不可重复读,但还有可能出现幻读
(4)Serializable 序列化
Serializable 是最高的事务隔离级别,同时代价也花费最高,性能很低,一般很少使用,在该级别下,事务顺序执行,不仅可以避免脏读、不可重复读,还避免了幻像读。
2、脏读、幻读、不可重复读
(1)脏读:
脏读就是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。
(2)不可重复读:
是指在一个事务内,多次读同一数据。在这个事务还没有结束时,另外一个事务也访问该同一数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改,那么第一个事务两次读到的的数据可能是不一样的。这样就发生了在一个事务内两次读到的数据是不一样的,因此称为是不可重复读。(即不能读到相同的数据内容)
例如,一个编辑人员两次读取同一文档,但在两次读取之间,作者重写了该文档。当编辑人员第二次读取文档时,文档已更改。原始读取不可重复。如果只有在作者全部完成编写后编辑人员才可以读取文档,则可以避免该问题。
(3)幻读:
是指当事务不是独立执行时发生的一种现象,例如第一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。同时,第二个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,以后就会发生操作第一个事务的用户发现表中还有没有修改的数据行,就好象发生了幻觉一样。
例如,一个编辑人员更改作者提交的文档,但当生产部门将其更改内容合并到该文档的主复本时,发现作者已将未编辑的新材料添加到该文档中。如果在编辑人员和生产部门完成对原始文档的处理之前,任何人都不能将新材料添加到文档中,则可以避免该问题。
六、Mysql如何实现ACID
事务是MySQL等关系型数据库区别于NoSQL的重要方面,是保证数据一致性的重要手段。本文将首先介绍MySQL事务相关的基础概念,然后介绍事务的ACID特性,并分析其实现原理。
1、基础概念
事务(Transaction)是访问和更新数据库的程序执行单元;事务中可能包含一个或多个sql语句,这些语句要么都执行,要么都不执行。作为一个关系型数据库,MySQL支持事务,本文介绍基于MySQL5.6。
(1)逻辑架构和存储引擎
MySQL服务器逻辑架构从上往下可以分为三层:
第一层:处理客户端连接、授权认证等。
第二层:服务器层,负责查询语句的解析、优化、缓存以及内置函数的实现、存储过程等。
第三层:存储引擎,负责MySQL中数据的存储和提取。MySQL中服务器层不管理事务,事务是由存储引擎实现的。MySQL支持事务的存储引擎有InnoDB、NDB Cluster等,其中InnoDB的使用最为广泛;其他存储引擎不支持事务,如MyIsam、Memory等。
(2)提交和回滚
其中start transaction标识事务开始,commit提交事务,将执行结果写入到数据库。如果sql语句执行出现问题,会调用rollback,回滚所有已经执行成功的sql语句。当然,也可以在事务中直接使用rollback语句进行回滚。
自动提交
MySQL中默认采用的是自动提交(autocommit)模式,在自动提交模式下,如果没有start transaction显式地开始一个事务,那么每个sql语句都会被当做一个事务执行提交操作。
通过如下方式,可以关闭autocommit;需要注意的是,autocommit参数是针对连接的,在一个连接中修改了参数,不会对其他连接产生影响。
如果关闭了autocommit,则所有的sql语句都在一个事务中,直到执行了commit或rollback,该事务结束,同时开始了另外一个事务。
特殊操作
在MySQL中,存在一些特殊的命令,如果在事务中执行了这些命令,会马上强制执行commit提交事务;如DDL语句(create table/drop table/alter/table)、lock tables语句等等。
不过,常用的select、insert、update和delete命令,都不会强制提交事务。
(3)ACID特性
ACID是衡量事务的四个特性:
按照严格的标准,只有同时满足ACID特性才是事务;但是在各大数据库厂商的实现中,真正满足ACID的事务少之又少。例如MySQL的NDB Cluster事务不满足持久性和隔离性;InnoDB默认事务隔离级别是可重复读,不满足隔离性;Oracle默认的事务隔离级别为READ COMMITTED,不满足隔离性……因此与其说ACID是事务必须满足的条件,不如说它们是衡量事务的四个维度。
2、原子性
(1)定义
原子性是指一个事务是一个不可分割的工作单位,其中的操作要么都做,要么都不做;如果事务中一个sql语句执行失败,则已执行的语句也必须回滚,数据库退回到事务前的状态。
(2)实现原理:undo log
在说明原子性原理之前,首先介绍一下MySQL的事务日志。MySQL的日志有很多种,如二进制日志、错误日志、查询日志、慢查询日志等,此外InnoDB存储引擎还提供了两种事务日志:redo log(重做日志)和undo log(回滚日志)。其中redo log用于保证事务持久性;undo log则是事务原子性和隔离性实现的基础。
下面说回undo log。实现原子性的关键,是当事务回滚时能够撤销所有已经成功执行的sql语句。InnoDB实现回滚,靠的是undo log:当事务对数据库进行修改时,InnoDB会生成对应的undo log;如果事务执行失败或调用了rollback,导致事务需要回滚,便可以利用undo log中的信息将数据回滚到修改之前的样子。
undo log属于逻辑日志,它记录的是sql执行相关的信息。当发生回滚时,InnoDB会根据undo log的内容做与之前相反的工作:对于每个insert,回滚时会执行delete;对于每个delete,回滚时会执行insert;对于每个update,回滚时会执行一个相反的update,把数据改回去。
以update操作为例:当事务执行update时,其生成的undo log中会包含被修改行的主键(以便知道修改了哪些行)、修改了哪些列、这些列在修改前后的值等信息,回滚时便可以使用这些信息将数据还原到update之前的状态。
3、持久性
(1)定义
持久性是指事务一旦提交,它对数据库的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。
(2)实现原理:redo log
redo log和undo log都属于InnoDB的事务日志。下面先聊一下redo log存在的背景。
InnoDB作为MySQL的存储引擎,数据是存放在磁盘中的,但如果每次读写数据都需要磁盘IO,效率会很低。为此,InnoDB提供了缓存(Buffer Pool),Buffer Pool中包含了磁盘中部分数据页的映射,作为访问数据库的缓冲:当从数据库读取数据时,会首先从Buffer Pool中读取,如果Buffer Pool中没有,则从磁盘读取后放入Buffer Pool;当向数据库写入数据时,会首先写入Buffer Pool,Buffer Pool中修改的数据会定期刷新到磁盘中(这一过程称为刷脏)。
Buffer Pool的使用大大提高了读写数据的效率,但是也带了新的问题:如果MySQL宕机,而此时Buffer Pool中修改的数据还没有刷新到磁盘,就会导致数据的丢失,事务的持久性无法保证。
于是,redo log被引入来解决这个问题:当数据修改时,除了修改Buffer Pool中的数据,还会在redo log记录这次操作;当事务提交时,会调用fsync接口对redo log进行刷盘。如果MySQL宕机,重启时可以读取redo log中的数据,对数据库进行恢复。redo log采用的是WAL(Write-ahead logging,预写式日志),所有修改先写入日志,再更新到Buffer Pool,保证了数据不会因MySQL宕机而丢失,从而满足了持久性要求。
4、隔离性
(1)定义
与原子性、持久性侧重于研究事务本身不同,隔离性研究的是不同事务之间的相互影响。隔离性是指,事务内部的操作与其他事务是隔离的,并发执行的各个事务之间不能互相干扰。严格的隔离性,对应了事务隔离级别中的Serializable (可串行化),但实际应用中出于性能方面的考虑很少会使用可串行化。
隔离性追求的是并发情形下事务之间互不干扰。简单起见,我们仅考虑最简单的读操作和写操作(暂时不考虑带锁读等特殊操作),那么隔离性的探讨,主要可以分为两个方面:
(一个事务)写操作对(另一个事务)写操作的影响:锁机制保证隔离性
(一个事务)写操作对(另一个事务)读操作的影响:MVCC保证隔离性
(2)锁机制
首先来看两个事务的写操作之间的相互影响。隔离性要求同一时刻只能有一个事务对数据进行写操作,InnoDB通过锁机制来保证这一点。
锁机制的基本原理可以概括为:事务在修改数据之前,需要先获得相应的锁;获得锁之后,事务便可以修改数据;该事务操作期间,这部分数据是锁定的,其他事务如果需要修改数据,需要等待当前事务提交或回滚后释放锁。
(3)总结
概括来说,InnoDB实现的RR,通过锁机制、数据的隐藏列、undo log和类next-key lock,实现了一定程度的隔离性,可以满足大多数场景的需要。不过需要说明的是,RR虽然避免了幻读问题,但是毕竟不是Serializable,不能保证完全的隔离。
5、一致性
(1)定义
一致性是指事务执行结束后,数据库的完整性约束没有被破坏,事务执行的前后都是合法的数据状态。数据库的完整性约束包括但不限于:实体完整性(如行的主键存在且唯一)、列完整性(如字段的类型、大小、长度要符合要求)、外键约束、用户自定义完整性(如转账前后,两个账户余额的和应该不变)。
(2)实现
可以说,一致性是事务追求的最终目标:前面提到的原子性、持久性和隔离性,都是为了保证数据库状态的一致性。此外,除了数据库层面的保障,一致性的实现也需要应用层面进行保障。
实现一致性的措施包括:
保证原子性、持久性和隔离性,如果这些特性无法保证,事务的一致性也无法保证
数据库本身提供保障,例如不允许向整形列插入字符串值、字符串长度不能超过列的限制等
应用层面进行保障,例如如果转账操作只扣除转账者的余额,而没有增加接收者的余额,无论数据库实现的多么完美,也无法保证状态的一致
6、总结
总结一下ACID特性及其实现原理:
(1)原子性:语句要么全执行,要么全不执行,是事务最核心的特性,事务本身就是以原子性来定义的;实现主要基于undo log
(2)持久性:保证事务提交后不会因为宕机等原因导致数据丢失;实现主要基于redo log
(3)隔离性:保证事务执行尽可能不受其他事务影响;InnoDB默认的隔离级别是RR,RR的实现主要基于锁机制、数据的隐藏列、undolog和类next-key lock机制
(4)一致性:事务追求的最终目标,一致性的实现既需要数据库层面的保障,也需要应用层面的保障
七、Mysql千万级优化
1、优化sql和索引
2、增加缓存memcached,redis
3、主从复制或主主复制,读写分离
4、mysql自带分区表
5、垂直拆分,其实就是根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统
6、水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key,为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;mysql数据库一般都是按照这个步骤去演化的,成本也是由低到高
八、单表优化
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量。
1、字段
尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED
VARCHAR的长度只分配真正需要的空间
使用枚举或整数代替字符串类型
尽量使用TIMESTAMP而非DATETIME,
单表不要有太多字段,建议在20以内
避免使用NULL字段,很难查询优化且占用额外索引空间
用整型来存IP
2、索引
索引并不是越多越好,要根据查询有针对性的创建,考虑在WHERE和ORDER
BY命令上涉及的列建立索引,可根据EXPLAIN来查看是否用了索引还是全表扫描
应尽量避免在WHERE子句中对字段进行NULL值判断,否则将导致引擎放弃使用索引而进行全表扫描
值分布很稀少的字段不适合建索引,例如"性别"这种只有两三个值的字段
字符字段只建前缀索引
字符字段最好不要做主键
不用外键,由程序保证约束
尽量不用UNIQUE,由程序保证约束
使用多列索引时主意顺序和查询条件保持一致,同时删除不必要的单列索引
3、查询SQL
可通过开启慢查询日志来找出较慢的SQL
不做列运算:SELECT id WHERE age + 1 =10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边
sql语句尽可能简单:一条sql只能在一个cpu运算;大语句拆小语句,减少锁时间;一条大sql可以堵死整个库
不用SELECT *
OR改写成IN:OR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内
不用函数和触发器,在应用程序实现
避免%xxx式查询
少用JOIN
使用同类型进行比较,比如用’123’和’123’比,123和123比
尽量避免在WHERE子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描
对于连续数值,使用BETWEEN不用IN:SELECT id FROM t WHERE num BETWEEN 1 AND 5
列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大