(PAT 1102) Invert a Binary Tree(反转二叉树+寻找二叉树的根结点)

The following is from Max Howell @twitter:

Google: 90% of our engineers use the software you wrote (Homebrew), but you can't invert a binary tree on a whiteboard so fuck off.

Now it's your turn to prove that YOU CAN invert a binary tree!

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤10) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node from 0 to N−1, and gives the indices of the left and right children of the node. If the child does not exist, a - will be put at the position. Any pair of children are separated by a space.

Output Specification:

For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.

Sample Input:

8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6

Sample Output:

3 7 2 6 4 0 5 1
6 5 7 4 3 2 0 1

解题思路:

利用前序遍历,遍历到每一个结点时,交换该结点的左右子树即可

void invertBinaryTree(int root) {
	if (root == -1) return;
	swap(BTree[root].lchild, BTree[root].rchild);
	invertBinaryTree(BTree[root].lchild);
	invertBinaryTree(BTree[root].rchild);
}

这里的坑点是怎样寻找二叉树的根结点: 根据性质,二叉树根节点是只有出度没有入度的,所以在插入节点时,给每个子节点上一个不是根节点的标记,最后没有被上标记的那个就是根节点

#include 
#include 
#include 
#include 
using namespace std;
const int MAXN = 100001;
int N;
struct sNode {
	int lchild = -1, rchild = -1;
	bool notRoot = false;
}BTree[MAXN];
void invertBinaryTree(int root) {
	if (root == -1) return;
	swap(BTree[root].lchild, BTree[root].rchild);
	invertBinaryTree(BTree[root].lchild);
	invertBinaryTree(BTree[root].rchild);
}
int num1 = 0;
void inorder(int root) {
	if (BTree[root].lchild != -1) {
		inorder(BTree[root].lchild);
	}
	cout << root;
	num1++;
	if (num1 < N) cout << " ";
	if (BTree[root].rchild != -1) {
		inorder(BTree[root].rchild);
	}
}
int num2 = 0;
void LayerOrder(int root) {
	queue BFS_QUeue;
	BFS_QUeue.push(root);
	while (!BFS_QUeue.empty()) {
		cout << BFS_QUeue.front();
		int curnode = BFS_QUeue.front();
		num2++;
		if (num2 < N) cout << " ";
		BFS_QUeue.pop();
		if (BTree[curnode].lchild != -1) {
			BFS_QUeue.push(BTree[curnode].lchild);
		}
		if (BTree[curnode].rchild != -1) {
			BFS_QUeue.push(BTree[curnode].rchild);
		}
	}
}

int main() {
	scanf("%d", &N);
	for (int i = 0; i < N; ++i) {
		char lc, rc;
		scanf("%*c%c %c", &lc, &rc);
		if (lc == '-' && rc == '-') {
			BTree[i].lchild = -1;
			BTree[i].rchild = -1;
			BTree[BTree[i].lchild].notRoot = true;
			BTree[BTree[i].rchild].notRoot = true;

		}
    	else if (lc == '-' || rc == '-') {
			if (lc == '-') {
				BTree[i].lchild = -1;
				BTree[i].rchild = rc - '0';
				BTree[BTree[i].rchild].notRoot = true;
			}
			else if(rc == '-'){
				BTree[i].lchild = lc - '0';
				BTree[i].rchild = -1;
				BTree[BTree[i].lchild].notRoot = true;
			}
		}
		else {
			BTree[i].lchild = lc - '0';
			BTree[i].rchild = rc - '0';
			BTree[BTree[i].lchild].notRoot = true;
			BTree[BTree[i].rchild].notRoot = true;
		}
	}
	//确立根结点
	int droot = 0;
	for (int i = 0; i < N; ++i) {
		if (BTree[i].notRoot == false) {
			droot = i;
			break;
		}
	}
	//反转二叉树
	invertBinaryTree(droot);
	LayerOrder(droot);
	cout << endl;
	inorder(droot);
	system("PAUSE");
	return 0;
}

 

你可能感兴趣的:(ACM算法习题)