- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 破壁制裁:大马士革证券交易所证券交易系统搭建方案(叙利亚)
——基于边缘计算、RWA清算与抗断网架构的叙利亚金融新基建今日金融战场速报(2025年7月9日):特朗普签署行政令对进口铜征收50%关税,并威胁对药品加征200%关税,引发纽铜单日暴涨13%,创1968年来最大涨幅。与此同时,胡塞武装袭击红海商船推高油价至两周峰值,避险资本涌入黄金与数字资产,叙利亚黑市里亚尔汇率崩至58.3万:1美元——在制裁与动荡中,技术正成为被孤立经济体的生存氧气。一、叙利亚
- 软件架构设计中消息总线的应用详解
半青年
消息总线网络协议信息与通信kafkaMQTT物联网系统架构
目录一、消息总线的核心原理1.解耦与异步通信2.消息路由与协议适配3.可靠性保障二、消息总线的核心功能1.动态扩展与负载均衡2.容错与高可用性3.数据转换与集成三、典型应用场景1.微服务架构中的服务解耦2.大规模数据流处理3.复杂事务管理4.边缘计算与物联网四、设计考量与选型建议1.通信模式选择2.协议与生态适配3.容错与监控五、案例分析:SpringCloudBus与物联网平台1.SpringC
- 贪心算法应用:MEC任务卸载问题详解
纪元A梦
贪心算法贪心算法算法
Java中的贪心算法应用:MEC任务卸载问题详解1.问题背景与定义1.1移动边缘计算(MEC)概述移动边缘计算(MobileEdgeComputing,MEC)是一种将云计算能力下沉到网络边缘的技术架构。在MEC环境中,计算任务可以在终端设备、边缘服务器和云端之间进行卸载和分配,以实现更低的延迟、更高的效率和更好的用户体验。1.2任务卸载问题定义MEC任务卸载问题是指如何将移动设备上的计算任务合理
- spring boot项目配置使用minion
一.Minio概述Minio是一款开源的高性能对象存储服务,兼容AmazonS3API,适用于私有云、混合云及边缘计算场景。它采用分布式架构设计,支持水平扩展,提供数据加密、版本控制、生命周期管理等企业级功能,适用于存储非结构化数据(如图片、视频、日志等)。核心特性S3兼容:完全兼容AmazonS3API,现有S3工具可直接对接。高性能:基于Golang编写,优化了并发和吞吐量,适合高负载场景。分
- HarmonyOS5.0仓颉引擎与盘古大模型:个性化作业批改系统架构设计与实现
H老师带你学鸿蒙
系统架构HarmonyOS5.0鸿蒙华为仓颉教育
人工智能与边缘计算的融合正在重塑教育评价体系。本文将展示如何基于HarmonyOS5.0仓颉并发引擎和盘古大模型,构建新一代智能作业批改系统。系统架构全景graphTDA[学生端设备]-->|提交作业|B[仓颉边缘处理]B-->C[盘古大模型分析]C-->D[个性化反馈生成]D-->E[学生终端]D-->F[教师仪表盘]subgraphHarmonyOS分布式系统B-->|设备协同|G[教室平板集
- 这是gpt o1给出的物联网工程专业的大学规划,有人看看这个合理吗?
王倚山
gpt物联网学习开发语言
下面是一份更为详细、覆盖全年(包括寒暑假)的四阶段学习规划,旨在帮助你在大学剩余时间里持续学习、循序渐进地掌握物联网(IoT)核心技能,打造深厚的技术壁垒。每个阶段都有明确的学习目标与自学内容细节,并在寒暑假安排了“强化期”任务,让你全年不停歇,不断提升。总体思路稳扎稳打:从嵌入式基础到RTOS、传感器驱动、通信协议,再到边缘计算、云平台、工业协议、安全攻防,层层深入。项目驱动:每个阶段至少完成1
- 边缘计算赋能大屏监控:毫秒级数据响应的底层架构解析
深空数字孪生
边缘计算架构人工智能
想象一下,交通指挥中心的大屏上,道路拥堵情况却比实际晚了好几秒才显示;工厂监控大屏里,设备故障警报姗姗来迟,导致生产线遭受重大损失……传统大屏监控的延迟问题,常常让它变成“慢半拍”的摆设。而边缘计算的出现,就像给大屏监控装上了“超能力芯片”,能实现毫秒级的数据响应,让大屏真正成为实时洞察的“千里眼”。那么,边缘计算究竟是如何做到这一点的?它背后的底层架构又藏着哪些秘密?接下来,让我们一探究竟。一、
- AI小智项目全解析:软硬件架构与开发环境配置
Despacito0o
ai语音助手人工智能硬件架构struts
AI小智项目全解析:软硬件架构与开发环境配置一、项目整体架构AI小智是一款基于ESP32的智能物联网设备,集成了语音交互、边缘计算等功能。整体系统架构如下:终端设备:ESP32模组作为核心通信方式:WebSocket实现实时音视频传输MQTT连接物联网后台管理系统HTTP进行系统间数据交换二、软件架构详解2.1后端技术栈#核心技术栈backend_stack={"语言":"Python","框架"
- 5G与边缘计算融合架构:核心能力下沉与网络切片技术解析
码农老gou
5G5G边缘计算架构
15G核心能力下沉的技术逻辑在数字化转型浪潮中,网络架构正经历从中心化向分布式模式的根本性变革。5G网络与边缘计算的深度融合正在重构下一代智能连接架构,其核心在于将传统的中心化网络能力下沉至边缘节点,形成分布式算力网络。这种架构转型源于对超低时延、高带宽和海量连接的业务需求,驱动网络基础设施向用户侧靠拢,实现计算与通信的无缝融合。1.1分布式架构转型需求5G三大核心能力——增强移动宽带(eMBB)
- YOLOv5Lite模型量化与TFLite转换全流程指南
神经网络15044
仿真模型深度学习神经网络YOLO神经网络人工智能深度学习网络机器学习
YOLOv5Lite模型量化与TFLite转换全流程指南1.引言在边缘计算和移动设备上部署目标检测模型时,模型大小和推理速度是关键考量因素。YOLOv5Lite作为YOLO系列的轻量级变种,专为资源受限环境设计。然而,要进一步优化模型性能,量化(Quantization)和转换为TFLite格式是必不可少的步骤。本文将详细介绍从训练好的YOLOv5Lite模型到量化TFLite模型的完整转换流程,
- 浅谈边缘计算与 CDN 融合发展趋势
目录前言一、边缘计算与CDN技术概述1、边缘计算:靠近数据源的高效处理2、CDN:内容分发的加速引擎二、边缘计算与CDN融合的优势1、更低的延迟与更快的响应速度2、减轻云数据中心负载3、提高数据安全性4、优化资源分配三、融合面临的挑战1、节点部署与维护难题2、数据同步与一致性问题3、跨域互操作与标准化缺失四、融合发展趋势1、深度融合与协同优化2、智能化与自动化管理3、安全和隐私保护强化4、跨领域应
- 目标检测在国防和政府的应用实例
MzKyle
计算机视觉目标检测人工智能计算机视觉
一、目标检测技术概述目标检测是计算机视觉的核心任务,通过算法对图像/视频中的物体进行识别与定位,当前主流技术包括:经典算法:YOLO系列(实时性强)、FasterR-CNN(精度高)、SSD(平衡速度与精度)技术升级:结合深度学习(CNN、Transformer)、多模态融合(视觉+红外+雷达)、边缘计算实时处理二、国防领域核心应用实例(一)军事侦察与监控系统无人机侦察与目标识别应用场景:战术无人
- 2025系统架构师---管道/过滤器架构风格
喜欢猪猪
java开发语言
引言在分布式系统与数据密集型应用主导技术演进的今天,管道/过滤器架构风格(PipesandFiltersArchitectureStyle)凭借其数据流驱动、组件解耦与并行处理能力,成为处理复杂数据转换任务的核心范式。从Unix命令行工具到实时金融交易引擎,从图像处理流水线到物联网边缘计算,管道/过滤器架构通过将系统拆分为独立处理单元(过滤器)与数据传递通道(管道),实现了功能模块
- Python 物联网(IoT)与边缘计算开发实战(1)
gohacker
python开发语言人工智能
Python物联网(IoT)与边缘计算开发实战https://www.python.org/static/community_logos/python-logo-master-v3-TM.png物联网基础与硬件交互RaspberryPiGPIO控制pythonimportRPi.GPIOasGPIOimporttime#设置GPIO模式GPIO.setmode(GPIO.BCM)GPIO.setw
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(下)
Allen_Lyb
数智化医院2025人工智能健康医疗数据库矩阵
医疗边缘AI的市场趋势医疗边缘AI市场正经历着显著的增长,根据市场研究公司的数据,2024年的边缘AI市场价值为125亿美元,估计在2025至2034年之间,由于各部门越来越多地采用边缘装置,CAGR为24.8%。保健、制造业、零售业和汽车业的企业拥有综合边缘计算解决方案[36]。这一增长趋势表明,边缘AI技术正在各行各业得到广泛应用,其中医疗保健是一个重要的应用领域。2023年全球边缘人工智能市
- Python知识点:如何使用Nvidia Jetson与Python进行边缘计算
杰哥在此
Python系列python边缘计算开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用NvidiaJetson与Python进行边缘计算NvidiaJetson平台是专为边缘计算设计的一系列AI计算机,它们能够处理和分析来自物联网(IoT)设备和边缘节点的数据。这些设备小巧、节能且功能强大,非常适合用于执行机器学习、计算机视觉和自然语言处理等任务。Python
- 在NVIDIA Jetson和RTX上运行Google DeepMind的Gemma 3N:多模态AI的边缘计算革命
扫地的小何尚
人工智能边缘计算GPUNVIDIAnlpcuda
在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命文章目录在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命引言:多模态AI进入边缘计算时代文章结构概览第一章:Gemma3N模型技术架构深度解析1.1Gemma3N模型概述与发展历程1.1.1模型架构的核心设计原则1.1.2多模态
- 边缘计算与 CDN 融合技术实践教程
快快网络-三七
云计算优化边缘计算人工智能
目录前言一、核心技术原理与架构设计1.1边缘计算与CDN协同架构1.2智能调度算法二、数据同步与一致性实现2.1边缘节点数据缓存机制2.2一致性哈希算法应用三、典型应用场景实践3.1实时视频直播优化3.2物联网数据处理四、部署与运维要点4.1容器化部署4.2监控与告警五、未来技术演进方向总结前言在互联网流量爆发式增长、低延迟应用场景不断涌现的背景下,边缘计算与CDN的融合已成为提升网络性能的核心技
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- Spring生态:云原生与AI的革新突破
ithadoop
springbootspringCloud人工智能spring云原生
Spring生态创新应用引言Spring生态系统作为Java企业级开发的核心框架,已被全球76%的Java开发者采用,通过模块化设计提供了完整的开发生命周期支持。其控制反转(IoC)和面向切面编程(AOP)两大核心特性显著降低了代码耦合度,使电商等复杂系统更容易扩展和维护。在云原生浪潮推动下,Spring生态通过技术创新持续优化微服务架构和响应式编程能力,并与AI、边缘计算等前沿技术深度融合,成为
- 高性能AI核心板Z3588CV1:基于瑞芯微RK3588的旗舰级解决方案——8K视觉处理 · 6TOPS NPU算力 · 多场景边缘计算
九鼎创展科技
嵌入式硬件边缘计算arm开发android
RK3588处理器技术细节计算单元CPU:4×
[email protected](大核集群)4×
[email protected](能效集群)支持ARMDynamIQ混合架构,可实现任务智能调度GPU:Mali-G610MP4,支持OpenGLES3.2/2.0/1.1、Vulkan1.28KVPU视频编解码:H.265/H.264/AV1格式,支持60fps实时处理NPU:6TOPS算力(INT
- 分布式电源采集控制装置:山东光伏电站的“智能中枢”
微机综合保护
分布式
在山东省构建新型电力系统的战略布局中,分布式光伏装机规模已突破30GW,占比超全国总量的15%。面对大规模光伏并网带来的调峰压力与电压波动挑战,分布式电源采集控制装置作为核心调控装备,通过实时监测、智能决策与多端协同,成为保障电网安全、提升新能源消纳的关键技术载体。一、核心功能:构建多维数据闭环全量数据采集与边缘计算装置通过高精度传感器实时采集光伏阵列的发电功率、逆变器效率、环境辐照度等参数。内置
- PCDN与边缘计算:流量处理的双赢方案
数据库
PCDN与边缘计算:流量处理的双赢方案在数字化时代,宽带流量的快速增长对传统网络架构提出了更高要求。视频、直播、云计算等应用消耗了大量带宽资源,如何高效、低成本地处理流量成为行业关注的重点。PCDN(Peer-to-PeerContentDeliveryNetwork)与边缘计算的结合,为流量优化提供了双赢解决方案。PCDN通过利用用户闲置带宽和存储资源,构建分布式网络,使内容分发更接近终端用户。
- 瑞芯微RK3288、RK3399、RK3568、RK3368芯片性能介绍与对比分析
不对法
硬件编程嵌入式硬件linux单片机mcu
目录标题RK3568RK3288RK3368RK3399RK3568是瑞芯微2020年底最新发布的一款定位中高端的通用型SoC,采用22nm工艺制程,支持Android11和Linux操作系统(Linux+qt/Fedora/Debian/Ubuntu),主要面向行业应用市场,如视频会议、智慧安防、商业显示、边缘计算、物联网网关、视频编解码等领域。集成4核arm架构A55处理器和MaliG522E
- 远程办公与协作新趋势:从远程桌面、VDI到边缘计算,打造高效、安全的混合办公环境
北极光SD-WAN组网
边缘计算安全人工智能
一、引言随着数字化转型的加速,越来越多的企业开始采用远程办公和混合办公模式,以提升员工的灵活性和企业的敏捷性。然而,异地办公也带来了诸如桌面环境不一致、安全风险增加、沟通协作效率降低等诸多挑战。因此,如何打造一致、安全且高效的远程办公环境,成为企业管理者急需破解的难题。本文将从远程桌面与虚拟桌面基础架构(VDI)、协作工具与平台集成、边缘计算在混合办公中的应用三个维度,分析如何构建一个高效、安全且
- SD-WAN在智慧工厂中的实践:云平台与边缘计算高效协作解析
北极光SD-WAN组网
边缘计算人工智能
随着工业4.0与智能制造的深入推进,智慧工厂成为现代制造业的重要发展方向。智慧工厂依托云计算与边缘计算协同处理海量数据,以实现生产过程的智能化。然而,云平台和边缘计算之间的数据传输对网络的可靠性、灵活性和实时性提出了更高要求。在此背景下,SD-WAN(软件定义广域网)技术成为解决这一问题的重要工具。本文将探讨SD-WAN技术在制造业中如何优化云平台与边缘计算的协作应用,分析其在智慧工厂场景下的具体
- 限流系列之五:TDMQ RabbitMQ Serverless 版限流机制深度解析与实践指南
腾讯云中间件
消息队列腾讯云rabbitmqserverless
导语分布式集群限流是保障云服务高可用性的核心技术手段,其意义不仅在于防止系统过载,更是构建弹性架构、优化资源效率、实现业务可持续性的关键策略。未来,随着边缘计算和Serverless的普及,限流技术将进一步与底层基础设施深度融合,成为构建下一代高可用架构的核心基石。腾讯云TDMQRabbitMQServerless版作为一款极致弹性、高性能且高可靠的消息中间件,通过提供稳定低延迟的消息服务,助力企
- 基于机器学习的人形机器人电池健康状态预测方法
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据机器学习机器人人工智能ai
基于机器学习的人形机器人电池健康状态预测方法:从理论到实践的系统解析关键词电池健康状态(SOH)、剩余使用寿命(RUL)、人形机器人、机器学习、时序数据建模、多模态特征融合、边缘计算部署摘要本报告系统解析基于机器学习的人形机器人电池健康状态预测方法,覆盖从理论框架到工程实现的全链路。首先界定人形机器人场景下电池健康状态的核心指标(SOH/RUL/RC),梳理从电化学模型到数据驱动方法的技术演进;其
- 揭秘AI算力网络与通信中边缘计算的机器学习应用
揭秘AI算力网络与通信中边缘计算的机器学习应用关键词:AI算力网络、通信、边缘计算、机器学习、应用摘要:本文将深入探讨AI算力网络与通信中边缘计算的机器学习应用。我们会先介绍相关背景知识,接着解释核心概念,分析它们之间的关系,阐述核心算法原理和操作步骤,结合数学模型举例说明,通过项目实战展示代码实现与解读,探讨实际应用场景,推荐相关工具和资源,最后展望未来发展趋势与挑战。希望通过这篇文章,能让大家
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比