RunTime源码阅读(一)之weak

读weak之前先了解三个数据结构:SideTable、weak_table_t、weak_entry_t

一、基本数据结构

1.SideTable结构体

管理着引用计数表与弱引用表

struct SideTable {
    spinlock_t slock;
    RefcountMap refcnts;//引用计数表
    weak_table_t weak_table;//弱引用表
    ...
};

2.weak_table_t结构体

全局弱引用表。将对象id存储为键,和weak_entry_t结构作为它们的值。

struct weak_table_t {
    weak_entry_t *weak_entries;// hash数组,用来存储弱引用对象的相关信息weak_entry_t
    size_t    num_entries;// hash数组中的元素个数
    uintptr_t mask;// hash数组长度-1,会参与hash计算。(注意,这里是hash数组的长度,而不是元素个数。比如,数组长度可能是64,而元素个数仅存了2个)
    uintptr_t max_hash_displacement;// 可能会发生的hash冲突的最大次数
};

3. weak_entry_t

静态数组与动态数组结合的结构体,数量小于等于4存静态数组中,大于4存动态数组

struct weak_entry_t {
    DisguisedPtr referent;// 被弱引用的对象
    // 引用该对象的对象列表,联合。 引用个数小于4,用inline_referrers数组。 用个数大于4,用动态数组weak_referrer_t *referrers
    union {
        struct {
            weak_referrer_t *referrers;// 弱引用该对象的对象列表的动态数组
            uintptr_t        out_of_line_ness : 2;// 是否使用动态数组标记位
            uintptr_t        num_refs : PTR_MINUS_2;// 动态数组中有效元素个数
            uintptr_t        mask;//动态数组元素个数
            uintptr_t        max_hash_displacement;// 最大的hash冲突次数(说明了最多做max_hash_displacement次hash冲突,肯定会找到对应的数据)
        };
        struct {
            // out_of_line_ness field is low bits of inline_referrers[1]
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    };
    ...
};

二、初始化

1.入口

//weak源码分析
void weak(){
    Person * person = [[Person alloc] init];

    //指针地址指向指针
    __weak Person *weakPerson = person;
    __weak Person *weakPerson2 = person;
    NSLog(@"person指针:%p\nweakPerson指针:%p",person,weakPerson);
    NSLog(@"person指针地址:%p\nweakPerson指针地址:%p",&person,&weakPerson);
}

流程:objc_initWeak(id *location, id newObj)->storeWeak(id *location, objc_object *newObj)->weak_register_no_lock(...)

2.weak_register_no_lock

id 
weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                      id *referrer_id, bool crashIfDeallocating)
{
    objc_object *referent = (objc_object *)referent_id;//对象指针
    objc_object **referrer = (objc_object **)referrer_id;//指针地址

    // 如果referent为nil 或 referent 采用了TaggedPointer计数方式,直接返回,不做任何操作
    if (!referent  ||  referent->isTaggedPointer()) return referent_id;

    // ensure that the referenced object is viable
    // 确保被引用的对象可用(没有在析构,同时应该支持weak引用)
    bool deallocating;
    if (!referent->ISA()->hasCustomRR()) {
        deallocating = referent->rootIsDeallocating();
    }
    else {
        BOOL (*allowsWeakReference)(objc_object *, SEL) = 
            (BOOL(*)(objc_object *, SEL))
            object_getMethodImplementation((id)referent, 
                                           SEL_allowsWeakReference);
        if ((IMP)allowsWeakReference == _objc_msgForward) {
            return nil;
        }
        deallocating =
            ! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
    }
    // 正在析构的对象,不能够被弱引用
    if (deallocating) {
        if (crashIfDeallocating) {
            _objc_fatal("Cannot form weak reference to instance (%p) of "
                        "class %s. It is possible that this object was "
                        "over-released, or is in the process of deallocation.",
                        (void*)referent, object_getClassName((id)referent));
        } else {
            return nil;
        }
    }

    // now remember it and where it is being stored
    // 在 weak_table中找到referent对应的weak_entry,并将referrer加入到weak_entry中
    weak_entry_t *entry;
    if ((entry = weak_entry_for_referent(weak_table, referent))) {// 如果能找到weak_entry,则讲referrer插入到weak_entry中
        append_referrer(entry, referrer);// 将referrer追加到weak_entry_t的引用数组中
    } 
    else {
        weak_entry_t new_entry(referent, referrer);//创建weak_entry_t
        weak_grow_maybe(weak_table);//扩大数组操作
        weak_entry_insert(weak_table, &new_entry);//new_entry插入weak_table
    }
    return referent_id;
}
  1. 对象指针不能为空,非TaggedPointer对象。
  2. 判断对象没有析构
  3. 最主要是最后面一段:
    1.分配一个新的new_entry对象
    2.weak_grow_maybe判断weak_table是否需要扩容
    3.new_entry插入到weak_table中
    4.如果weak_table中有referent,用append_referrer追加到entry中。

3.weak_entry_for_referent(weak_table, referent)

查找weak_table是否包含了referent。一段while循环查找。

static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
    assert(referent);

    weak_entry_t *weak_entries = weak_table->weak_entries;

    if (!weak_entries) return nil;

    size_t begin = hash_pointer(referent) & weak_table->mask;
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_table->weak_entries[index].referent != referent) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_table->weak_entries);
        hash_displacement++;
        if (hash_displacement > weak_table->max_hash_displacement) {
            return nil;
        }
    }
    
    return &weak_table->weak_entries[index];
}

4.weak_grow_maybe

判断weak_table是否需要扩容操作,当实际个数>=总长度的3/4时,在原有基础上扩大2倍。

static void weak_grow_maybe(weak_table_t *weak_table)
{
    size_t old_size = TABLE_SIZE(weak_table);

    // Grow if at least 3/4 full.
    if (weak_table->num_entries >= old_size * 3 / 4) {// 当大于现有长度的3/4时,会做数组扩容操作。
        weak_resize(weak_table, old_size ? old_size*2 : 64);// 初次会分配64个位置,之后在原有基础上*2
    }
}

5.weak_entry_insert把new_entry插入到weak_table_t中。

三.销毁

流程:objc_destroyWeak->storeWeak->weak_unregister_no_lock->remove_referrer

1.weak_unregister_no_lock

void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                        id *referrer_id)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;
    weak_entry_t *entry;
    // 如果referent为nil 或 referent 采用了TaggedPointer计数方式,直接返回,不做任何操作
    if (!referent) return;

    if ((entry = weak_entry_for_referent(weak_table, referent))) {// 查找
        remove_referrer(entry, referrer);// 在referent所对应的weak_entry_t的hash数组中,移除referrer
        
        // 移除元素之后, 要检查一下weak_entry_t的hash数组是否已经空了
        bool empty = true;
        //使用了可变数组,且数量不为0
        if (entry->out_of_line()  &&  entry->num_refs != 0) {
            empty = false;
        }
        else {
            //静态数组有值
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i]) {
                    empty = false; 
                    break;
                }
            }
        }

        if (empty) {// 如果weak_entry_t的hash数组已经空了,则需要将weak_entry_t从weak_table中移除
            weak_entry_remove(weak_table, entry);
        }
    }

}
  1. weak_entry_for_referent在weak_table查找referent,entry不为空做移除
  2. remove_referrer从weak_table移除referrer
  3. out_of_line动态数组标识与静态数组如果还不为空,weak_entry_remove移除entry

2.remove_referrer

static void remove_referrer(weak_entry_t *entry, objc_object **old_referrer)
{
    if (! entry->out_of_line()) {//静态数组
        for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
            if (entry->inline_referrers[i] == old_referrer) {
                entry->inline_referrers[i] = nil;
                return;
            }
        }
        _objc_inform("Attempted to unregister unknown __weak variable "
                     "at %p. This is probably incorrect use of "
                     "objc_storeWeak() and objc_loadWeak(). "
                     "Break on objc_weak_error to debug.\n", 
                     old_referrer);
        objc_weak_error();
        return;
    }
    //动态数组
    size_t begin = w_hash_pointer(old_referrer) & (entry->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (entry->referrers[index] != old_referrer) {
        index = (index+1) & entry->mask;
        if (index == begin) bad_weak_table(entry);
        hash_displacement++;
        if (hash_displacement > entry->max_hash_displacement) {
            _objc_inform("Attempted to unregister unknown __weak variable "
                         "at %p. This is probably incorrect use of "
                         "objc_storeWeak() and objc_loadWeak(). "
                         "Break on objc_weak_error to debug.\n", 
                         old_referrer);
            objc_weak_error();
            return;
        }
    }
    entry->referrers[index] = nil;
    entry->num_refs--;
}

如果是静态数组,置空后直接return.否则动态数组释放

3.weak_entry_remove

static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
{
    // remove entry
    if (entry->out_of_line()) free(entry->referrers);
    bzero(entry, sizeof(*entry));//清理entry sizeof(*entry)个字节

    weak_table->num_entries--;
    weak_compact_maybe(weak_table);//收容
}

释放,收容。

4.释放

局部变量在方法结束后立即释放,全局变量会在dealloc方法是否。

总结:

  1. weak的使用静态与动态数组提高了效率
  2. 动态数组,实质在插入数据时判断实际个数与总个数的大小,判断是否需要扩容。释放时也是如此来达到收容。
  3. 对于dealloc中的释放,会根据弱引用标志位weakly_referenced调用weak_clear_no_lock进行释放。

你可能感兴趣的:(RunTime源码阅读(一)之weak)