单纯形法介绍
详见我的另一篇文章https://blog.csdn.net/cpluss/article/details/100806516
python代码
import numpy as np
class Simplex(object):
def __init__(self, c, A, b):
self.c = c
self.A = A
self.b = b
def run(self):
c_shape = self.c.shape
A_shape = self.A.shape
b_shape = self.b.shape
assert c_shape[0] == A_shape[1], "Not Aligned A with C shape"
assert b_shape[0] == A_shape[0], "Not Aligned A with b shape"
end_index = A_shape[1] - A_shape[0]
N = self.A[:, 0:end_index]
N_columns = np.arange(0, end_index)
c_N = self.c[N_columns, :]
B = self.A[:, end_index:]
B_columns = np.arange(end_index, A_shape[1])
c_B = self.c[B_columns, :]
steps = 0
while True:
steps += 1
print("Steps is {}".format(steps))
is_optim, B_columns, N_columns = self.main_simplex(B, N, c_B, c_N, self.b, B_columns, N_columns)
if is_optim:
break
else:
B = self.A[:, B_columns]
N = self.A[:, N_columns]
c_B = self.c[B_columns, :]
c_N = self.c[N_columns, :]
def main_simplex(self, B, N, c_B, c_N, b, B_columns, N_columns):
B_inverse = np.linalg.inv(B)
P = (c_N.T - np.matmul(np.matmul(c_B.T, B_inverse), N)).flatten()
if P.min() >= 0:
is_optim = True
print("Reach Optimization.")
print("B_columns is {}".format(B_columns))
print("N_columns is {}".format(sorted(N_columns)))
best_solution_point = np.matmul(B_inverse, b)
print("Best Solution Point is {}".format(best_solution_point.flatten()))
print("Best Value is {}".format(np.matmul(c_B.T, best_solution_point).flatten()[0]))
print("\n")
return is_optim, B_columns, N_columns
else:
N_i_in = np.argmin(P)
N_i = N[:, N_i_in].reshape(-1, 1)
y = np.matmul(B_inverse, N_i)
x_B = np.matmul(B_inverse, b)
N_i_out = self.find_out_base(y, x_B)
tmp = N_columns[N_i_in]
N_columns[N_i_in] = B_columns[N_i_out]
B_columns[N_i_out] = tmp
is_optim = False
print("Not Reach Optimization")
print("In Base is {}".format(tmp))
print("Out Base is {}".format(N_columns[N_i_in]))
print("B_columns is {}".format(sorted(B_columns)))
print("N_columns is {}".format(sorted(N_columns)))
print("\n")
return is_optim, B_columns, N_columns
def find_out_base(self, y, x_B):
index = []
min_value = []
for i, value in enumerate(y):
if value <= 0:
continue
else:
index.append(i)
min_value.append(x_B[i]/float(value))
actual_index = index[np.argmin(min_value)]
return actual_index
if __name__ == "__main__":
'''
c = np.array([-20, -30, 0, 0]).reshape(-1, 1)
A = np.array([[1, 1, 1, 0], [0.1, 0.2, 0, 1]])
b = np.array([100, 14]).reshape(-1, 1)
'''
c = np.array([-4, -1, 0, 0, 0]).reshape(-1, 1)
A = np.array([[-1, 2, 1, 0, 0], [2, 3, 0, 1, 0], [1, -1, 0, 0, 1]])
b = np.array([4, 12, 3]).reshape(-1, 1)
simplex = Simplex(c, A, b)
simplex.run()
只需要修改c、A、b便可以运行