GNU LD基本用法

今天把vivi所用到的ld的用法都看懂了,常见的选项含义也清楚了。翻看了一下kernel的链接脚本,发现相当复杂,并且需要对全局有很好 的把握,对整个的地址空间分配也必须清楚。这点暂时还做不到,属于后续工作。先把ld的基本用法总结一下,因为《Linkers and Loaders》还没有读完,所以暂时还不能作出总结。不过,对链接和加载已经有了更深入的认识。在读using ld时,很多地方自然就理解了。慢慢来,把这块知识体协理顺。

 
1、什么是ld?它有什么作用?
 
    ld是GNU binutils工具集中的一个,是众多Linkers(链接器)的一种。完成的功能自然也就是链接器的基本功能:把各种目标文件和库文件链接起来,并重 定向它们的数据,完成符号解析。Linking其实主要就是完成四个方面的工作:storage allocation、symbol management、libraries、relocation。
 
    ld可以识别一种Linker command Language表示的linker scriopt文件来显式的控制链接的过程。通过BFD(Binary Format Description)库,ld可以读取和操作COFF(common object file format)、ELF(executable and linking format)、a.out等各种格式的目标文件。
 
2、常用的选项
 
-b TARGET  设置目标文件的文件格式
-e ADDRESS 设置目标文件的开始地址
-EB  链接big-endian的目标文件
-EL  链接small-endian的目标文件
-l LIBNAME    创建执行程序时要链接的库文件(比如某个库为test,则可以为-ltest)
-L DIRECTORY  寻找要链接的库文件时搜索的文件路径
-o FILE  设置输出文件的名字
-s  去除输出文件中的所有符号信息
-S  去除输出文件中的调试符号信息
-T FILE  读取链接描述脚本,以确定符号等的定位地址
-v  输出ld的版本信息
-x  去除所有的局部符号信息
-X  去除临时的局部符号信息,默认情况下会设置这个选项
-Bstatic   创建的输出文件链接静态链接库
-Bdynamic  创建的输出文件链接动态链接库
-Tbss ADDRESS  设置section bss的起始地址
-Tdata ADDRESS 设置section data的起始地址
-Ttext ADDRESS 设置section text的起始地址
 
3、链接描述脚本
 
    链接描述脚本描述了各个输入文件的各个section如何映射到输出文件的各section中,并控制输出文件中section和符号的内存布局。
 
    目标文件中每个section都有名字和大小,而且可以标识为loadable(表示该section可以加载到内存中)、allocatable(表示 必须为这个section开辟一块空间,但是没有实际内容下载到这里)。如果不是loadable或者allocatable,则一般含有调试信息。
 
    每个有loadable或allocatable标识的输出section有两种地址,一种是VMA(Virtual Memory Address),这种地址是输出文件运行时section的运行地址;一种是LMA(Load Memory Address),这种地址是加载输出文件时section的加载地址。一般,这两种地址相同。但在嵌入式系统中,经常存在执行地址和加载地址不一致的情 况。如把输出文件加载到开发板的flash存储器中(地址由LMA指定),但运行时,要把flash存储器中的输出文件复制到SDRAM中运行(地址有 VMA指定)。
 
    在链接脚本中使用注释,可以用“/*...*/”。
 
    每个目标文件有许多符号,每个符号有一个名字和一个地址,一个符号可以是定义的,也可以是未定义的。对于普通符号,需要一个特殊的标识,因为在目标文件 中,普通符号没有一个特定的输入section。链接器会把普通符号处理成好像它们都在一个叫做COMMON的section中。
 
下面给出vivi的ld script的内容及分析。
(1)[Makefile]
 

LINKFLAGS = - Tarch/vivi. lds - Bstatic

 
    可见,链接的脚本是arch/vivi.lds,而且链接静态库。但是在arch下没有vivi.lds,而是有vivi.lds.in。看了一下 vivi.lds.in的内容,
 

SECTIONS {
  . = TEXTADDR;
  . text : { * ( . text) }
  . data ALIGN( 4) : { * ( . data) }
  . bss ALIGN( 4) : { * ( . bss) * ( COMMON) }
}

 
    很明显,这个就是原始的vivi的链接脚本。但是存在一个变量TEXTADDR没有赋值,也就是说,这个量根据配置的不同是不同的,所以肯定就在 Makefile中执行了生成方法。下一步就要看[arch/Makefile]
 
(2)[arch/Makefile]
 

LDSCRIPT = arch/ vivi. lds. in

 

ifeq ( $ ( CONFIG_ARCH_S3C2410) , y)
MACHINE = s3c2410
  ifeq ( $ ( CONFIG_S3C2410_NAND_BOOT) , y)
    TEXTADDR = 0x33f00000
  else
    TEXTADDR = 0x00000000
  endif
endif

 

vivi: $( HEAD) arch/ vivi. lds

arch/ vivi. lds: $( LDSCRIPT)
        @sed s/ TEXTADDR/ $ ( TEXTADDR) / $( LDSCRIPT) > $ @

 
    很明显,这步主要完成的工作就是要把vivi.lds.in文件中的TEXTADDR用配置后的实际值来代替。根据我的配置,这里我的TEXTADDR就 是0x33f00000.
 
 

SECTIONS {
  . = 0x33f00000;
  . text : { * ( . text) }
  . data ALIGN( 4) : { * ( . data) }
  . bss ALIGN( 4) : { * ( . bss) * ( COMMON) }
}

    SECTIONS表示段。第一行表示当前地址为0x33f00000,就是VMA,同时也是text段的起始地址。第二行用了通配符*表示所有字符,这里 的意思就是说指定的每个目标文件的text section的内容都放到同一个.text中。第三行表示指定的每个目标文件的data section的内容都放到同一个.data中,而且要四字节边界对齐。第四行表示指定的每个目标文件的bss section的内容都放到同一个.bss中,所有的普通符号都放到COMMON中,而且要四字节边界对齐。

    这算是最为简单的ld scripts,不过也够用了。如果不考虑对齐等因素,则可以直接在命令行中指定-Ttext 0x33f00000,就可以完成了。当然,对Linux kernel等,ld scripts要处理复杂的内存分配等操作,相应的要复杂一些,读那些的方法就是查阅using ld手册,同时还要研究MCU的内存分配,这样才能作出合理的安排。

 

转自:http://blog.chinaunix.net/u/21948/showart.php?id=352668

你可能感兴趣的:(Linux)