4. Median of Two Sorted Arrays-python

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1: nums1 = [1, 3] nums2 = [2]

The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

Code

class Solution(object):
    def findMedianSortedArrays(self, nums1, nums2):
        """
        :type nums1: List[int]
        :type nums2: List[int]
        :rtype: float
        """
        n1 = len(nums1)
        n2 = len(nums2)
        i = 0
        j = 0
        # sorting nums1 and nums2, sum pointer
        sumpointer = 0
        while (i < n1 or j < n2) and sumpointer <= (n1 + n2) >> 1:
            if i >= n1:
                j+=1
            elif j >= n2:
                i+=1
            # combination nums1 and nums2 to sort
            elif nums1[i] <= nums2[j]:
                i+=1
            else:
                j+=1
            sumpointer+=1
        even = (n1 + n2) % 2 == 0
        i-=1
        j-=1
        if i < 0:
            return (nums2[j - 1] + nums2[j]) / 2.0 if even == True  else nums2[j]
        if j < 0:
            return (nums1[i - 1] + nums1[i]) / 2.0 if even == True else nums1[i]
        # odd analysis
        if even==False:
            return max(nums1[i], nums2[j])
        #even analysis, 1.shows stone point is in nums2
        if nums1[i] < nums2[j]:
            if j - 1 >= 0 and nums1[i] <= nums2[j - 1]:
                return (nums2[j - 1] + nums2[j]) / 2.0
            return (nums1[i] + nums2[j]) / 2.0
        # shows stone point is in nums1
        if i - 1 >= 0 and nums2[j] <= nums1[i - 1]:
                return (nums1[i - 1] + nums1[i]) / 2.0
        return (nums1[i] + nums2[j]) / 2.0

你可能感兴趣的:(算法/LeetCode,经典算法,LeetCode题目研究)