《A graduated assignment algorithm for graph matching》论文阅读

一片很棒的文章!

问题描述:

若有两无向图,图\(G\)点个数\(A\),图 \(g\) 中点个数 \(I\) ,现需要找到两图的互相 \(node-corresponds-to-node\), 即最小化如下函数:

\[E_{wg}(M)= -\frac{1}{2}\sum_{a=1}^A \sum_{i=1}^I \sum_{b=1} ^A\sum_{j=1} ^I M_{ai}M_{bj}C_{aibj} \]

\[s.t \ \ \ \forall a \sum_{i=1}^I M_{ai} \leq 1 \ \ \ \ \forall i \sum_{a=1}^A M_{ai} \leq 1 \ \ \ M_{ai} \in \{0,1\}\]

论文内容

将问题的约束条件如果通过矩阵表示:
《A graduated assignment algorithm for graph matching》论文阅读_第1张图片
《A graduated assignment algorithm for graph matching》论文阅读_第2张图片
最后算法:
《A graduated assignment algorithm for graph matching》论文阅读_第3张图片

你可能感兴趣的:(《A graduated assignment algorithm for graph matching》论文阅读)