题目链接
problem
给出一棵有边权的树。一条链的权值定义为该链所经过的边的边权值和。需要选出\(m\)条链,求\(m\)条链中权值最小的链的权值最大是多少。
solution
首先显然二分。
然后考虑如何判断二分出来的一个答案\(x\)是否是可行的。也就是能否选出\(m\)条链,每条链权值都大于等于\(x\)。这个其实是贪心。
定义直链为从一个某个点的祖先到该点的路径。
可以发现每条链要么就是一条直链,要么由两条直链在某个点处合并起来得到。
贪心的地方在于,对于每个点肯定都是优先将能合成的直链合成。然后再保证向上传递的直链长度最大。因为即便向上传递的长度特别大,产生的贡献也做多只能是\(1\)。所以要先保证在当前子树上合成最多的链。
然后问题就变成了在一棵子树内得到一些直链长度。现在把这些直链两两合并成权值大于等于\(x\)的链。然后保证剩下的直链长度最大。
这里可以二分答案一下。也可以用个\(multiset\)处理。反正是很可做的一个问题。
代码中有各档部分分,BF5为正解
code
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int N = 100010;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int n,m;
struct node {
int v,nxt,w;
}e[N << 1];
int head[N],ejs;
void add(int u,int v,int w) {
e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;e[ejs].w = w;
}
namespace BF1 {
int dis[N];
void dfs(int u,int fa) {
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(v == fa) continue;
dis[v] = dis[u] + e[i].w;
dfs(v,u);
}
}
void main() {
dfs(1,0);
int x = 0;
for(int i = 1;i <= n;++i) if(dis[i] > dis[x]) x = i;
// cout< p;--i) {
if(a[i] > x && i > p) {ret++;continue;}
while(a[p] + a[i] < x && p < i) ++p;
if(p < i) ret++,p++;
else break;
}
return ret;
}
void main() {
int l = 100000,r = 0;
for(int i = 1;i <= ejs;i += 2) a[++cnt] = e[i].w,l = min(l,a[cnt]),r += a[cnt];
sort(a + 1,a + cnt + 1);
int ans = 0;
while(l <= r) {
int mid = (l + r) >> 1;
if(check(mid) >= m) ans = mid,l = mid + 1;
else r = mid - 1;
}
cout<= x) now = 0,ret ++;
}
return ret;
}
void main() {
for(int i = 1;i <= n;++i)
if(du[i] == 1) {dfs(i,0);break;}
int l = 1000000,r = 0;
for(int i = 1;i <= ejs;i += 2) {
l = min(l,e[i].w);r += e[i].w;
}
int ans = 0;
while(l <= r) {
int mid = (l + r) >> 1;
if(check(mid) >= m) ans = mid,l = mid + 1;
else r = mid - 1;
}
cout<s;
int ret = 0;
// if(!s.empty()) printf("%d\n",u);
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(v == fa) continue;
int k = dfs(v,u,x);
if(k + e[i].w >= x) ANS++;
else s.insert(k + e[i].w);
}
while(!s.empty()) {
multiset::iterator it = s.begin();
int k = *it;
s.erase(it);
multiset::iterator is = s.lower_bound(x - k);
if(is == s.end()) ret = max(ret,k);
else ANS++,s.erase(is);
}
// s.clear();
// printf("%d %d\n",u,ret);
return ret;
}
void main() {
int l = L,r = R,ans = 0;
while(l <= r) {
int mid =(l + r) >> 1;
ANS = 0;dfs(1,0,mid);
if(ANS >= m) ans = mid,l = mid + 1;
else r = mid - 1;
}
cout<