本文将向大家介绍两个方面的知识:
在前面的文章中已经向大家介绍了如何构建信令服务器。但构建的信令服务器是如何工作的?哪些消息需要信令服务器控制和中转?
另一方面,在真实的网络中,WebRTC是如何进行NAT穿越的呢?如果穿越不成功,我们又该如何保证服务?
信令
WebRTC 信令控制架构图
signal.png834×520 47.5 KB
信令服务器用于交换三种类型的信息:
会话控制消息
会话控制消息比较简单,像房间的创建与销毁、加入房间、离开房间、开启音频/关闭音频、开启视频/关闭视频等等这些都是会话控制消息。
还有许多的会话控制消息。像获取房间人数、静音/取消静音、切换主讲人、视频轮询、白板中的画笔、各种图型等等。但相对来说都是比较简单的消息。
在我们之前的例子中,服务端只处理了一个会话消息 create or join,即房间的创建与加入消息。代码如下:
... socket.on('create or join', function(room) { var clientsInRoom = io.sockets.adapter.rooms[room]; var numClients = clientsInRoom ? Object.keys(clientsInRoom.sockets).length : 0; if (numClients === 0) { socket.join(room); logger.debug('Client ID ' + socket.id + ' created room ' + room); socket.emit('created', room, socket.id); } else if (numClients === 1) { io.sockets.in(room).emit('join', room); socket.join(room); socket.emit('joined', room, socket.id); io.sockets.in(room).emit('ready'); } else { // max two clients socket.emit('full', room); } }); ...
该代码的逻辑非常简单,当收到 create or join 消息后,判断房间里当前人数,如果房间里的人数为 0,说明是第一个人进来,此时,需要向连接的客户端发送 created 消息;如果房间里的人数为 1,说明是第二个人进来,需要向客户端发送 joined消息;否则发送 full 消息,说明房间已满,因为目前一个房间最多只允许有两个人。
网络信息消息
网络信息消息用于两个客户端之间交换网络信息。
在WebRTC中使用 ICE 机制建立网络连接。
在WebRTC的每一端,当创建好 RTCPeerConnection 对象,且调用了setLocalDescription 方法后,就开始收集 ICE候选者 了。
在WebRTC中有三种类型的候选者,它们分别是:
主机候选者,表示的是本地局域网内的 IP 地址及端口。它是三个候选者中优先级最高的,也就是说在 WebRTC 底层,首先会尝试本地局域网内建立连接。
反射候选者,获取 NAT 内主机的外网IP地址和端口。其优先级低于 主机候选者。也就是说当WebRTC本地连接不通时,会通过反射候选者获得的 IP地址和端口进行连接。
其结构如下图所示:
stun.png834×520 72.5 KB
在上面这幅图中可以看到,WebRTC通过 STUN server 获得自己的外网IP和端口,然后通过信令服务器与远端的WebRTC交换网络信息。之后双方就可以建立 P2P 连接了。
以上就是我们通常所说的 P2P NAT 穿越。在WebRTC内部会探测用户的 NAT 类型,最终采用不同的方法进行 NAT 穿越。不过,如果双方都是 对称NAT 类型,是无法进行 P2P NAT 穿越的,此时只能使用中继了。
中继候选者,中继服务器的IP地址与端口,即通过服务器中转媒体数据。当WebRTC客户端无法穿越 P2P NAT 时,为了保证双方可以正常通讯,此时只能通过服务器中转来保证服务质量了。
所以 中继候选者的优先级是最低的,只有上述两种候选者都无法进行连接时,才会使用它。
在 WebRTC 信令服务器端,收到网络消息信令,即 message 消息时,不做任何处理,直接转发。代码如下:
socket.on('message', function(message) { socket.broadcast.emit('message', message); });
客户端接收到 message 消息后,会做进一步判断。如果消息类型为 candidate,即 网络消息信令时,会生成 RTCIceCandidate 对象,并将其添加到 RTCPeerConnection 对象中,从而使 WebRTC 在底层自动建立连接。 其代码如下:
socket.on('message', function(message) { ... } else if (message.type === 'candidate') { var candidate = new RTCIceCandidate({ sdpMLineIndex: message.label, candidate: message.candidate }); pc.addIceCandidate(candidate); } else if (...) { ... } });
交换媒体能力消息
在WebRTC中,媒体能力最终通过 SDP 呈现。在传输媒体数据之前,首先要进行媒体能力协商,看双方都支持那些编码方式,支持哪些分辨率等。协商的方法是通过信令服务器交换媒体能力信息。
offer_answer.png1077×433 49.4 KB
WebRTC 媒体协商的过种如上图所示。
通过以上步骤就完成了通信双方媒体能力的交换。
在WebRTC 通讯时,光有信令是远远不够的。因为 WebRTC真正要传输的是媒体数据,信令只不过是其中的一部分。在WebRTC中会尽可能的通过P2P进行数据的传输,但在 P2P穿越不成功时怎么办呢?
那就需要通过媒体中继服务器进行媒体数据的转发,下面我们就来看一下如何搭建媒体中继服务器吧。
搭建 STUN/TURN
目前比较流行的 STUN/TURN 服务器是 coturn,
git clone https://github.com/coturn/coturn.git
cd coturn ./configure --prefix=/usr/local/coturn sudo make -j 4 && make install
网上有很多关于 coturn 的配置文章,搞的很复杂。大多数人都是从网上拷贝转发的,其中有很多错误。其实只要使用 coturn 的默认设置就可以了,我这里整理了一份,如下:
listening-port=3478 #指定侦听的端口 external-ip=39.105.185.198 #指定云主机的公网IP地址 user=aaaaaa:bbbbbb #访问 stun/turn服务的用户名和密码 realm=stun.xxx.cn #域名,这个一定要设置
所以,只需将上面 4 行配置项写入到 /usr/local/coturn/etc/turnserver.conf 配置文件中,你的 stun/turn 服务就配置好了。
cd /usr/local/coturn/bin turnserver -c ../etc/turnserver.conf
打开 trickle-ice ,按里面的要求输入 stun/turn 地址、用户和密码后就可以探测stun/turn服务是否正常了。
以我们的配置为例,输入的信息分别是:
测试的结果如下图所示:
ice.png2126×460 64.7 KB
从上图我们可以看到该服务提供了 stun(srflx)和turn(relay)两种服务。
STUN/TURN布署好后,我们就可以使用它进行多媒体数据的传输了,再也不怕因为 NAT 和防火墙的原因导致双方无法通信的问题了。
IM和视频聊天的,可以参考下这个 https://github.com/starrtc/starrtc-android-demo
https://rtcdeveloper.com/t/topic/13742