need not science on line, install tensorflow 2.2.0 based on gpu rtx2080ti

cuda , CUPTI and cudnn, following official site:

cuda first, tensorflow second.

https://tensorflow.google.cn/install

https://tensorflow.google.cn/install/gpu

 

 

==1.=============================================================================================
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo dpkg -i cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update

# Install NVIDIA driver
sudo apt-get install --no-install-recommends nvidia-driver-430
# Reboot. Check that GPUs are visible using the command: nvidia-smi

#LL:when table printed, execute this again:
sudo apt-get update


# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
    cuda-10-1 \
    libcudnn7=7.6.4.38-1+cuda10.1  \
    libcudnn7-dev=7.6.4.38-1+cuda10.1


# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer6=6.0.1-1+cuda10.1 \
    libnvinfer-dev=6.0.1-1+cuda10.1 \
    libnvinfer-plugin6=6.0.1-1+cuda10.1
==2.=============================================================================================

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/extras/CUPTI/lib64

==3.=============================================================================================
vim ~/.bashrc
export PATH="/usr/local/cuda-10.1/bin:$PATH"
source ~/.bashrc
==4.=============================================================================================
[/home/openclo-host/anaconda3]>>>"enter directly"
PREFIX=/home/opencl-host/anaconda3
...
...
Do you wish the installer to initialize Anaconda3 by running conda init?[yes|no]
[no]>>>yes
==========================
$which conda
$which pip
$which python
$which ipython
==5.=============================================================================================
#LL:fanqiang
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
==6.=============================================================================================
pip install tensorflow
fail as global pypi, instead:
pip install  -i https://pypi.tuna.tsinghua.edu.cn/simple  tensorflow

more detail:
https://mirrors.tuna.tsinghua.edu.cn/help/pypi/

==7.=============================================================================================

Downloads/pycharm-community-2020.1.2/bin$ ls
format.sh  fsnotifier  fsnotifier64  idea.properties  inspect.sh  libdbm64.so  log.xml  printenv.py  pycharm64.vmoptions  pycharm.png  pycharm.sh  pycharm.svg  pycharm.vmoptions  restart.py

==8.=============================================================================================
==9.=============================================================================================end.

 

 

useless:

cuda10.1Linux x86_64:
https://developer.nvidia.com/cuda-10.1-download-archive-update2?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal

cuda10.0Linux x86_64:

https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal


anaconda_2019.03:

https://repo.anaconda.com/archive/


cudnn 7.5.0 for cuda10.0:
https://developer.nvidia.com/rdp/cudnn-archive
cuDNN Library for Linux

 

advance==> recovery mode ==> enable networking ==>root:
sudo apt-get install -y xserver-xorg-input-all

你可能感兴趣的:(tensorflow)