OpenAI Gym构建自定义强化学习环境

OpenAI Gym是开发和比较强化学习算法的工具包。

OpenAI Gym由两部分组成:

  • gym开源库:测试问题的集合。当你测试强化学习的时候,测试问题就是环境,比如机器人玩游戏,环境的集合就是游戏的画面。这些环境有一个公共的接口,允许用户设计通用的算法。
  • OpenAI Gym服务。提供一个站点(比如对于游戏cartpole-v0:https://gym.openai.com/envs/CartPole-v0)和api,允许用户对他们的测试结果进行比较。

gym的核心接口是Env,作为统一的环境接口。Env包含下面几个核心方法:

  • reset(self):重置环境的状态,返回观察。
  • step(self, action):推进一个时间步长,返回observation,reward,done,info
  • render(self, mode=’human’, close=False):重绘环境的一帧。默认模式一般比较友好,如弹出一个窗口。

自定义环境

背景

OpenAI Gym构建自定义强化学习环境_第1张图片

机器人在一个二维迷宫中走动,迷宫中有火坑、石柱、钻石。如果机器人掉到火坑中,游戏结束,如果找到钻石,可以得到奖励,游戏也结束!设计最佳的策略,让机器人尽快地找到钻石,获得奖励。

操作环境

Python环境:anaconda5.2

pip安装gym

步骤

anaconda3/lib/python3.6/site-packages/gym/envs 下新建目录 user ,用于存放自定义的强化学习环境。

user 目录下新建环境 grid_mdp_v1.py

import logging
import random
import gym

logger = logging.getLogger(__name__)

class GridEnv1(gym.Env):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 2
    }

    def __init__(self):

        self.states = range(1,17) #状态空间

        self.x=[150,250,350,450] * 4
        self.y=[450] * 4 + [350] * 4 + [250] * 40 + [150] * 4

        self.terminate_states = dict()  #终止状态为字典格式
        self.terminate_states[11] = 1
        self.terminate_states[12] = 1
        self.terminate_states[15] = 1

        self.actions = ['n','e','s','w']

        self.rewards = dict();        #回报的数据结构为字典
        self.rewards['8_s'] = -1.0
        self.rewards['13_w'] = -1.0
        self.rewards['7_s'] = -1.0
        self.rewards['10_e'] = -1.0
        self.rewards['14_4'] = 1.0

        self.t = dict();             #状态转移的数据格式为字典
        self.t['1_s'] = 5
        self.t['1_e'] = 2
        self.t['2_w'] = 1
        self.t['2_e'] = 3
        self.t['3_s'] = 6
        self.t['3_w'] = 2
        self.t['3_e'] = 4
        self.t['4_w'] = 3
        self.t['4_s'] = 7
        self.t['5_s'] = 8
        self.t['6_n'] = 3
        self.t['6_s'] = 10
        self.t['6_e'] = 7
        self.t['7_w'] = 6
        self.t['7_n'] = 4
        self.t['7_s'] = 11
        self.t['8_n'] = 5
        self.t['8_e'] = 9
        self.t['8_s'] = 12
        self.t['9_w'] = 8
        self.t['9_e'] = 10
        self.t['9_s'] = 13
        self.t['10_w'] = 9
        self.t['10_n'] = 6
        self.t['10_e'] = 11
        self.t['10_s'] = 14
        self.t['10_w'] = 9
        self.t['13_n'] = 9
        self.t['13_e'] = 14
        self.t['13_w'] = 12
        self.t['14_n'] = 10
        self.t['14_e'] = 15
        self.t['14_w'] = 13


        self.gamma = 0.8         #折扣因子
        self.viewer = None
        self.state = None

    def _seed(self, seed=None):
        self.np_random, seed = random.seeding.np_random(seed)
        return [seed]

    def getTerminal(self):
        return self.terminate_states

    def getGamma(self):
        return self.gamma

    def getStates(self):
        return self.states

    def getAction(self):
        return self.actions

    def getTerminate_states(self):
        return self.terminate_states

    def setAction(self,s):
        self.state=s

    def step(self, action):
        #系统当前状态
        state = self.state
        if state in self.terminate_states:
            return state, 0, True, {}
        key = "%d_%s"%(state, action)   #将状态和动作组成字典的键值

        #状态转移
        if key in self.t:
            next_state = self.t[key]
        else:
            next_state = state
        self.state = next_state

        is_terminal = False

        if next_state in self.terminate_states:
            is_terminal = True

        if key not in self.rewards:
            r = 0.0
        else:
            r = self.rewards[key]

        return next_state, r, is_terminal,{}

    def reset(self):
        self.state = self.states[int(random.random() * len(self.states))]
        return self.state

    def render(self, mode='human'):
        from gym.envs.classic_control import rendering
        screen_width = 600
        screen_height = 600

        if self.viewer is None:

            self.viewer = rendering.Viewer(screen_width, screen_height)

            #创建网格世界
            self.line1 = rendering.Line((100,100),(500,100))
            self.line2 = rendering.Line((100, 200), (500, 200))
            self.line3 = rendering.Line((100, 300), (500, 300))
            self.line4 = rendering.Line((100, 400), (500, 400))
            self.line5 = rendering.Line((100, 500), (500, 500))
            self.line6 = rendering.Line((100, 100), (100, 500))
            self.line7 = rendering.Line((200, 100), (200, 500))
            self.line8 = rendering.Line((300, 100), (300, 500))
            self.line9 = rendering.Line((400, 100), (400, 500))
            self.line10 = rendering.Line((500, 100), (500, 500))

            #创建石柱
            self.shizhu = rendering.make_circle(40)
            self.circletrans = rendering.Transform(translation=(250,350))
            self.shizhu.add_attr(self.circletrans)
            self.shizhu.set_color(0.8,0.6,0.4)

            #创建第一个火坑
            self.fire1 = rendering.make_circle(40)
            self.circletrans = rendering.Transform(translation=(450, 250))
            self.fire1.add_attr(self.circletrans)
            self.fire1.set_color(1, 0, 0)

            #创建第二个火坑
            self.fire2 = rendering.make_circle(40)
            self.circletrans = rendering.Transform(translation=(150, 150))
            self.fire2.add_attr(self.circletrans)
            self.fire2.set_color(1, 0, 0)

            #创建宝石
            self.diamond = rendering.make_circle(40)
            self.circletrans = rendering.Transform(translation=(450, 150))
            self.diamond.add_attr(self.circletrans)
            self.diamond.set_color(0, 0, 1)

            #创建机器人
            self.robot= rendering.make_circle(30)
            self.robotrans = rendering.Transform()
            self.robot.add_attr(self.robotrans)
            self.robot.set_color(0, 1, 0)

            self.line1.set_color(0, 0, 0)
            self.line2.set_color(0, 0, 0)
            self.line3.set_color(0, 0, 0)
            self.line4.set_color(0, 0, 0)
            self.line5.set_color(0, 0, 0)
            self.line6.set_color(0, 0, 0)
            self.line7.set_color(0, 0, 0)
            self.line8.set_color(0, 0, 0)
            self.line9.set_color(0, 0, 0)
            self.line10.set_color(0, 0, 0)

            self.viewer.add_geom(self.line1)
            self.viewer.add_geom(self.line2)
            self.viewer.add_geom(self.line3)
            self.viewer.add_geom(self.line4)
            self.viewer.add_geom(self.line5)
            self.viewer.add_geom(self.line6)
            self.viewer.add_geom(self.line7)
            self.viewer.add_geom(self.line8)
            self.viewer.add_geom(self.line9)
            self.viewer.add_geom(self.line10)
            self.viewer.add_geom(self.shizhu)
            self.viewer.add_geom(self.fire1)
            self.viewer.add_geom(self.fire2)
            self.viewer.add_geom(self.diamond)
            self.viewer.add_geom(self.robot)

        if self.state is None: 
            return None

        self.robotrans.set_translation(self.x[self.state-1], self.y[self.state- 1])

        return self.viewer.render(return_rgb_array=mode == 'rgb_array')

    def close(self):
        if self.viewer:
            self.viewer.close()

user 目录下新建 __init__.py

from gym.envs.user.grid_mdp_v1 import GridEnv1

anaconda3/lib/python3.6/site-packages/gym/envs/__init__.py 中进行注册,在最后加入

register(
    id='GridWorld-v1',
    entry_point='gym.envs.user:GridEnv1',
    max_episode_steps=200,
    reward_threshold=100.0,
    )

测试

import gym

env = gym.make('GridWorld-v1')
env.reset()
env.render()
env.close()

OpenAI Gym构建自定义强化学习环境_第2张图片

你可能感兴趣的:(machine,learning)