1. mykernel 下载并安装
参考孟老师PPT上的教程,以下为终端命令行详细步骤:
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch sudo apt install axel axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt-get install build-essential gcc-multilib
sudo apt install qemu # install QEMU
sudo apt-get install libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on 'x86_64_defconfig'
make -j$(nproc)
qemu-system-x86_64 -kernel arch/x86/boot/bzImage
核心代码为 ./linux-5.4.34/mykernel 文件夹中的 mymain.c 和 myinterrupt.c 文件
综上,我们可以了解到,在 mykernel 系统启动后,首先会调用 my_start_kernel 函数,不断循环打印,然后周期性的调用 my_timer_handler 函数。
因此,内核的编写围绕以上两个函数展开即可。
2. mykernel 系统内核
(1)参考 PPT 以及老师上课的讲解,在 mykernel 文件夹中添加 mypcb.h (进程描述头文件),并修改 mymain.c 和 myinterrupt.c 中的代码
(2)终端回退到 ./linux-5.4.34 文件夹下,输入如下命令:
make defconfig # Default configuration is based on 'x86_64_defconfig' make -j$(nproc) qemu-system-x86_64 -kernel arch/x86/boot/bzImage
可以看到如下输出:
mykernel 一直在虚拟进程 process0 到 process3 之间轮回切换,从而实现一个简单的时间片轮转操作系统内核。
3.关键代码分析
(1)mypcb.h
#define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*2 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ unsigned long stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);
在该头文件中,定义了进程的基本描述信息 栈顶指针sp 和 指令指针ip,也对进程控制块的数据结构做了相关描述。
pid:进程标示
state:进程所处的不同状态,进程刚创建是为-1,表示未运行;被调用时,为0
stack[KERNEL_STACK_SIZE]:用数组模拟进程的堆栈
thread:进程的基本描述信息
task_entry:进程入口函数地址
next:指向下一个进程的指针
(2)mymain.c
#include#include #include #include #include #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
核心函数为__init my_start_kernel,实现了所有进程(在本模拟系统中统一为 my_process 函数)的创建和初始化,而内嵌如下一段汇编代码
asm volatile( "movq %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ );
该段汇编代码将0号进程的 ip 和 sp 分别存入 rip 和 rsp 寄存器,实现0号进程的加载。
(3)myinterrupt.c
#include#include #include #include #include #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
my_timer_handler函数实现了进程的周期性调用,每循环1000次,就通知进程去执行调度函数 my_schedule,关键的汇编代码如下
asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) );
上述代码,将旧进程的 ip、sp等指针信息保存,并将新进程的 ip、sp 存入相应寄存器,从而实现不同进程之前的切换。
4.总结
通过手动实现 mykernel 操作系统的内核,我学习到了进程的创建、加载以及不同进程之间切换的相关知识。通过内嵌在c语言中的汇编代码,直接对操作系统底层做相应操作,透过现象看本质,着实受益良多。